Undergraduate Thesis
Bachelor of Computer Systems Engineering

Lecture Timetabling Using Genetic Algorithms

Author Leon Bambrick
Supervisor Dr B Lovell

Department of Electrical and Computer Engineering

The University of Queensland

11 Rhuddlan Street
Carindale 4152

Ph (07) 3398 7864
October 20, 1997

The Dean

School of Engineering
University of Queensland
St Lucia, Q 4072

RE: Submission of thesis entitled “Lecture Timetabling Using Genetic Algorithms”.

Dear Professor Simmons,

In accordance with the requirements of the degree of Bachelnmgifieering
(Pass) in thalivision of Computer SystemBngineering Ipresent thdollowing thesis
entitled “LectureTimetabling Using Genetic Algorithms". Thvgork was performed
under the supervision of Dr B Lovell.

| declarethat the worksubmitted in this thesis is my own, except as
acknowledged, and hast beemreviously submittedor a degree at theniversity of

Queensland or any other institution.

Yours sincerely,

LEON BAMBRICK
328 828 944

Abstract.

This paperdetailsthe implementation of aomputer programvhich employs Genetic
Algorithms (GAs) inthe quest for anptimal lecture timetablgenerator. GA theory is
covered with emphasis on less fully encodgstems employingon-genetioperators.

The field of AutomatedTimetabling is alscexplored. A timetable igxplained as,
essentially, a schedule wittonstraints placed upon it. The program, written in C,
incorporates a repair strategy for faster evolution. smelified university timetable
problem it consistently evolves constraint violation free timetables. The effects of
altered mutatiomate and population sizare tested. It iseen that the GA could be
improved bythe further incorporation of repair strategies, anéaslily scalable to the
complete timetabling problem. Appendices include the entire source code.

Acknowledgments

| would like to acknowledge the contribution of Mrian Lovell in firstly suggesting
the topic and secondly supervising this thesis through its various phases.

Also | wish tothank Ms Sharomdennesseyor herinvaluableasistance and endless

support.

“Everyone has a story to tell about a bad timetable.”
Burke and Ross (1995), pg 9.

Table of Contents

AB ST R A C T . ittt ettt e e ettt e e e ettt e e e e e e e e e e et e e e e r bbb a e e e e e e eeeeeenee iii
ACKNOWLEDGMENTS ...ttt ettt a e e e e e e e et et e e ea e bbb nn e e e e e eeeeeeeeeennnnnes iv
TABLE OF CONTENTS ..ottt ettt sttt e e e e ettt e e e n e e e e e e et e e e e e eennnnaaaas vi
LIST OF FIGURES ... sttt e e e e e e et ettt e e bbb s e e e e e e e eeeeennnns iX
LIST OF TABLES ..ottt e e e e e e e e e e et e e e e bbb e e e eeas X
CHAPTER 1: INTRODUCTION ...iiiiiiiieiiiiiiieeit ettt e e e e e e e e e et e e e e et e e e e e e e eeeeenees 1
CHAPTER 2: BACKGROUND ..ottt ettt e e e e e et e e e e e e e e 2
THEORY OFGENETIC ALGORITHMS. ...ttt ettt ettt eeet e ettt e e e et e e e et e e e ta e e et e e e et e e ean s e e et aeeeaaaeenaeaeanaaaeennns 2
The Origins of ArtifiCial SPECIES.ccoveiie e 2.
ENcoding Of CRrOMOSOMIES. e ettt e e e e e e e eaaans 3
A chicken and €gg ProbIEM. ettt e e e e e 4
POPUIALION SIZE. ...ttt e e e e e e e et e et e e et e e e e bbb e e e e eeeas 4
Evaluating @ CNromMOSOMEooiiiiiiiiiiiietee et e e e e e e nmmmnae 4
INILIAlISING @ POPUIALION. ...t ettt 5
Methods of Selecting for Extinction or for Breeding...........coooviiiiiiiiiiiiiiieeeeeeeee 6
L0 (0115101 SO PP PP TP 7
U= Ao o U PPRT B
TN V2= €] o] o P PSR PRTRRT 9....
LamMArCKIBN OPBIALOIS. ... ittt e ettt e ettt e e e e e e e ettt e e e e bbb e r e e e e e e eeeeeeenenneeanas 10
MemEtiC AIQOMTNMIS. ... ettt e e e e 10
REPAIN SITATEGIES. ...ttt e et oo e e e e e et ettt e et ab e bbb s e e e e e e e e eeeeeeeeeeeennnes 10
Optimising Genetic Algorithm PerformMancCeueveviviiiiiiiiiiiiiiiiiiiieiiieeeeeee et aaseeeeeee e 11
Applications of Genetic AIGOMTNMSooiiiiiii s 11
AUTOMATED TIMETABLING ...ttt eettu ettt ae et eeet e e et et et e e e et e e e et e e e ta et e ba e e e ea e e et s e e et aaebn e aeba s eaeanneaennnaeeen 13
Soft anNd Hard CONSIIAINTS. ...couuei et e e e et e e e e e e e ss—— 13
Other Applications of a Lecture Timetabling GA........ou e 15
CHAPTER 3: METHOD ...ttt ettt e e e e e et et e e e aa e e e e e e eeeeenes 16
THE SIMPLIFIED LECTURE TIMETABLING PROBLEM. ..c.uiiiitiiiii e ettt e et et e et e e e e et e e eeneeeens 16
IMPLEMENTING A TIMETABLE AS A GENETIC ALGORITHM. «.ctuttttuniaeti ettt aaeeiaaeatiaeeataeeesneaetnaeastaaaesnnnes 16
(670l 11111 | B D - | - N TSP SPPPPTRR SRR 17
I A1) =L o] [T PP UPT TR 18
REPAIN SIFAEGY ...eeeeieiiiiiitti ettt e e et e e e e et e ettt e e e e e b bbb r e e e e a e e e e e et e e e e eeennnrnnnnaenas 20

Evaluation Of @ TIMELADIEouiiee et e et et e e et e et e et e e e et e e aene 21

Related Class Clash ErTOrSo 22
ROOM TOO SMAUI ETTOIS...ceiiiiiitiiiii ettt e e e et e et e e e e e e e e e e e e e 23
Lecturer DOUDIE@ BOOKET EITOIS. ...uuuuuiiiiiiiiiiee ettt e e e e e e e e e e e e eeeeeeenes 23
Lecturer Unavailable EITOrS.t e e s 23.
Selecting Timetables for EXINCHONooiiiiiiiiiiii e 24
Breeding TIMETADIES.ooo ettt e e e e e e e e e e eeeeeeeane 24
MULALING TIMETADIES. ...ttt e s 25
EXPERIMENTAL PROCEDUREiiiitttiieiieiti ettt e ettt e et s e et et e e e e et e et e e s e e e e e e ab s e e e e eananneeeenes 25
Tests 1 to 5: The Effect of Several Different Constraint Weightings.cceiviiiiiiiiiiiiiiiiiinneenn, 26
Test 1: Related Class Clash ErTOrS. ... 26
Test 2: ROOM TOO SMAI EFTOIS. ..uuiiiiiiiiiiiiee et e e e e e e e e e e e e e e eeeeeeeees 26
Test 3: Lecturer Double BOOKEA EITOIS.coii i 27
Test 4: Lecturer UNavailable ErTOrS...........uuiiiiiiiiii e 27
Test 5: Test of Four Weighted Hard CONSTraintS.ccoooieeiieie e e 27
TESE B NG TESE 7. ettt e e ettt ettt ettt bbb e et e e e e e ettt ee e e e e e e e nbb e bbb s 27
TeSt 6: MULALION RAIE TEST. ...uuiiiii it e e e e e e e e e e et e e e e e eeeenrnnbbenrereeees 27
Test 7: POPUIALION SIZE TEST. ...uuiiiiiiiiiiie i 28..
CHAPTER 4: RESULTS OF TESTS ON “GAAT T.C e 29
LSS = T PP 29
Test 1: Related Class Clash ErTOrS. ... 29
Test 2: ROOM TOO SMAIl EFTOES......coiiiiiiiiiiei et 29
Test 3: Lecturer Double BOOKEA EITOIS.......cooiiiiiiieeii et 30
Test 4: Lecturer UNavailable ErTOrS........... i 30
Test 5: Test of Four Weighted Hard CONSTraiNtS.ccooooioeiieeeee e e 32
TESTO: MUTATION RATE TEST. ..iiiiiiiiieiitii ettt s e e e s e e e e e e e s e e a e e e e enbr e e e 35
TEST7: POPULATION SIZE TEST. 1uuuiiiiitiiiiiiieii ettt e et e e e e e e e e e e e e e e e e reenra e 35
CHAPTER 5: DISCUSSION ...ttt ettt e et e et e e et e e et e e et e e et aaeanas 37
REVIEW OF PERFORMANCE OF GAATT.C 1ottiiiiiittii ettt ettt e et e st e et e e e e e e ab e e e e s e e neenens 37
Performance of “gaatt.C” in TESIS L 10 4 ...t e e e e 37
Performance Of “gaatt.C” IN TEST D ... et eeeaaaan s 38
Performance Of “gaatt.C” IN TEST 6.uui i e e et eeeeeeaan s 39
Performance of “gaatt.C” IN TEST 7. ...oooi i e e e e e e e e e e e e e e e 39
POSSIBLEIMPROVEMENTS TO GAATT.C” 1ettiiiitittii e e ettt e ettt e st e e st et e e e e b e s e e s e ab e e et e ara e e e neenens 40
Incorporating Soft Constraints iNt0 “gaatt.C”couuuuiiiiei e ee e 40
Improving the existing RePair SIFatEQY........u i e e e 40

The Possible Incorporation of Further Repair Strategies on “gaatt.C”.............cccceeee s w40

Vil

Initialisation of Timetables from Secondary StOrage.c.uuuuiiiiiiiiiiiiiiii e 41

Consideration of Alternative Data Structures for TImetables. ... 41
EXTENDING “GAATT.C” TO THE COMPLETELECTURETIMETABLING PROBLEM.civiiiiiiiiiiiecieiceeenas 42
A BRIEFDISCUSSION OFGENETIC ALGORITHMS . 1. tuitititiitettiteae et ete st eaeteeae s eae it sa ettt e e sseenesenesenrenans 43
CHAPTER 6: CONCLUSIONS. ... oottt e et e e e et et e e e e e e e s anaens 45
APPENDIX A: REFERENCE L ST . ettt e e et e e et e e e et e e a st e e aenen 46
APPENDIX B: C CODE FOR G A AT T . C ettt e e e e e e e e eaas 50

Viil

FIGURE 1:
FIGURE 2:
FIGURE 3:
FIGURE 4:
FIGURE 5:
FIGURE 6:
FIGURE 7:
FIGURE 8:
FIGURE 9:
FIGURE 10
FIGURE 11

FIGURE 12:
FIGURE 13:
FIGURE 14:
FIGURE 15:
FIGURE 16:
FIGURE 17:
FIGURE 18:
FIGURE 19:
FIGURE 21:

TeEsT1

FIGURE 22:

TEST?2

FIGURE 23:

FORTEST3

FIGURE 24

FIGURE 27
FIGURE 28

FORTESTS

FIGURE 29

FORTESTS

FIGURE 30
FIGURE 31

List of Figures

TOP LEVEL DESCRIPTION OF A A . ettt ittt ettt e e et et e et et et e ettt e e et eae s eaaaenas 2

A/ERAGE NUMBER OFLECTURERDOUBLE BOOKED ERRORS VSNUMBER OF GENERATIONS
. AVERAGE NUMBER OFLECTURERUNAVAILABLE ERRORS VSNUMBER OF GENERATIONS IN

. AVERAGE NUMBER OFROOM TOO SVALL ERRORS VSNUMBER OF GENERATIONS INTEST533
. AVERAGE NUMBER OFLECTURERDOUBLE BOOKED ERRORS VSNUMBER OF GENERATIONS
. AVERAGE NUMBER OFLECTURERUNAVAILABLE ERRORS VSNUMBER OFGENERATIONS

. AVERAGE COST AFTER500 GENERATIONS VSMUTATION RATE FORTEST6

. AVERAGE COST AFTER500 GENERATIONS VSSIZE OF POPULATION FORTEST7

List of Tables

TABLE 1: WEIGHTINGS OF EACH TYPE OF HARD CONSTRAINT VIOLATION IN TESTS 1

TABLE 2: SUMMARY OF RESULTS FROM TESTS 1 TQ.5...cciiiiiiiii e 35

Chapter 1: Introduction

This paper explains an exampigage of Genetic Algorithms (GAB)r finding optimal
solutions to theproblem ofLecture Timetabling at a large universitfhere are two
objectives in this. First, to provide a detailed introductiorthie topic of Genetic
Algorithms- their history, their method and their variations. The second objective is to
apply them to the problem of Automated Lecture Timetabling.

There are anumber of papersavailable which discusshe matter of Automated
Timetabling in detail. A faiproportion of thesemploy GA stylemethods to provide
solutionsthat areactually in place in several institutions. A collectiontloése can be
found in Burke and Ross (1996).

The currenttimetabling method used at thé&niversity of QueenslanqUQ) is
considered adequatelhis thesis does not inany way represent a proposed
replacement of that system.

Chapter 2: Background

Theory of Genetic Algorithms

The Origins of Artificial Species

John Holland’s book “Adaptation in natural and artificial systems” as well as De Jong’s
“Adaptation of thebehavior of a class of genetic adaptive systelnsth published in
1975, are seen as the foundation of Genetic Algorithms (GAs) (Davis, 1991).

Holland’s original schemavas a method ofclassifying objects, thenselectively
“breeding” those objectawith eachother to producenew objects to belassified
(Buckles and Petry, 1994). Created for the direct purposmacaielling Darwinian
natural selection, the programs followed a simple pattern of the birth, mating and death
of life forms. Atop level description of thigprocess igjiven inFIGURE 1 (Gen and
Cheng, 1997; Buckles and Petry, 1992; Davis, 1991; Shaffer, 1996; NovaGenetica,
1997; Heitkoetter, 1993; Hoener, 1996).

Create a population of creatures.
Evaluate the fitness of each creature.
While the population is not fit enough:
{
Kill all relatively unfit creatures.
While population size < max :
{
Select two population members.
Combine their genetic material to create a new creature.
Cause a few random mutations on the new creature.
Evaluate the new creature and place it in the population.
}
I3

FIGURE 1: Top Level description of a GA.

The creatures upomhich the geneti@algorithmacts are composed ofsaries of units
of information- referred to as genes. The gewbsch make up eackreature are
known as the chromosome. Each creature has its own chromosome.

A GA, as shown in FIGURE 1 requires a processiiflising, breeding, mutating,
choosing andilling. The orderand method of performing each of thegees rise to
many variations on Holland’s original schema.

Encoding of chromosomes

“a certain amount oért isinvolved in selecting a good decoding technique when a
problem is being attacked” (Davis 1991, p 4)

The first place onstartswhenimplementinga computer program is often in choosing
data typesAnd that is where thdirst major variation between Holland@riginal
schema and many other types of GA arises (Buckles and Petry, 1997).

Holland encoded chromosomes as a string of binary digitsimber ofproperties of
binary encodingwork to provide simple, effective and elegar®As. There are,
however,manyotherways torepresent a creature’s genesich can have their own
implicit advantages (Davis, 1991).

In order to get groblem into gene formthe substance of its solution must be
represented as a collection of units of information (Davis, 19913.istrue of many
problems.For example, when designing a weeklydget, the amount spent each
item could bestored as aumber in a column. This can teought of as ngust alist

of valuesbut a string of genes. Thalue inthe first row might represent the amount
of money to spend on rice, atide secondow might bethe amount ofmoney to
spend on caviar and sm. Each of thesealues might be&onverted from base 10 to
base 2 tacreate dixed width binary numberHence theproblem ofminimising your
budgetwhile maintainingyour survival istranslated into a genetic representation. A
collection of possiblebudgets could be thus encoded, producing a population of
Budget creatures.

In manycases, th@roblems to be encoded capem more easilsepresented by data
types other than binary (Anderson and Simpson, 1996). For example the budget we are

encoding seems mosgmilar to a list of real numbers withwo decimal placeshan a

list of binary numbers. Ithe performance of thavailablecomputing equipmenuvill

allow, then genes can be represented in the form of integers, reals, araaysdata

type declarable (Davis 1991). Encoding methadsich do not use a binary
representation argaid to be partially deded. It is often noted that #tis stage that
Evolutionary Programming techniques also use a population of creatures whose

external performance is not fully encoded (Heitkoetter, 1993).

A chicken and egg problem.

In the GAdialectthe encodedist of genes idabelled agenotype.While the actual

thing which theyencode idabelled aphenotype (Gen and Cheng, 1997). Whether a
phenotype is encoded to create a genotype or a genotype is decoded to create a
phenotype, is a question on which the literature varies (Heitkoetter, 1988y dase,

the actualalue of each gene is termedadiele (Gen and Cheng, 1997). In nature, the
genes ofliving creature are stored @sirs and each parenhly presents ongene

from each pair{Sherwood, 1993)This differs fromGAs, in which genesare not

stored in pairsBut, in bothGAs and biological life-formsnly afraction of a parents’

genes are passed to each offspring (Davis, 1991).

Population Size.

The firststep in a GA is tonitialise an entirgpopulation of chromosomes. The size of
this population must be chosen. Dependingtloa available computing techniques,
different sizesare optimal. If the populatiosize chosen itoo smallthen there is not
enough exploration of thglobal searclspace, although convergence is quicker. If the
population size isoo large then time will bevasted bydealing withmore data than is
required and convergence times will become considerably larger (Goldberg, 1989).

Evaluating a chromosome

Random populations are almost alwagdremely unfit (Davis, 1991). lorder to
determine whichare fitter than othersach creature must be evaluatedofder to
evaluate a creature, some knowledge must be known about the environment in which it
survives. This environment the partially encoded(or partially decoded) description

of the problem (Gen and Cheng). tur budgeting example we might describe the
characteristics of a good budget as a collection of rules. Onenigite be “Caviar is
expensive andot very nourishing- anypudgetwhich spends #ot on caviar will not

rate very well.” One byone each piece of knowledge relating tte problem is
converted to another rule usedemaluating acreature. Therenight beone or more
rules used in evaluating a chromosome. Whkeze are aaumber of rules (ie, in a
multi-objective problem), each rule can be given a relative importance- a weighting
(Rich, 1995).

Depending orthe way we structure the method a@valuating a chromosome we can
eitheraim to generate the least costly population or the nfigsit is a question of
minimising cost or maximising fitness. In the budgetingexample, the heuristic
concerning caviar can be represented witlost. Inoptimisation problemsost is not

a measure of moneput aunit of efficiency (Gen and Cheng, 1997; Davi€dl). In

this case it is simpler to say that caviar is costly, than that a lack of caviar is healthy. Of
course fitness can be seen awerselyrelated tocostand viceversa, so one can be
easily transformed to the other (Gen and Cheng, 1997).

When discussing optimisation techniquése range ofpossible solutions is often
referred to as the solution space and the cost/fitness of each point in the solution space
is referred to as the altitude in tlamdscape ofhe problem. To looking for thglobal
minimum of the cost is also to look for the lowest point in the lowedlty ofthe cost
landscapeSimilarly, to look for theglobal maximumfitness is tolook for the highest

point of thehighest mountain ithe fithess landscape. Terminologlgat assumes an
understanding of the concept of a cost landscape will be used throughout this paper.

With anynontrivial optimisation problem itvould take arunreasonably long amount

of time to exhaustively searche solution space for thgdobal minimum of cost. As

such optimisation techniquese employed which utiliséwo techniques to hasten the
search, referred to as exploitation and exploration. Exploitation is when information
about the explored region of thendscape is used to dirgbe search. Exploration is
where new, unexplored regions of tladdscapeare ventured into (Gen ar€heng,
1997). Finding a suitable mediubetween theséwo concepts isessentialfor fast
optimisation (Gen and Cheng, 1997).

Initialising a Population.

There aretwo general techniques foinitialising a population. A population of
creaturegall of the genetienformationaboutall of the creatures in the colony) can be
loaded from secondargtorage.This data wll then provide a starting point for the
directed evolution. Moreommonlythe GA canstartwith a random populationthis

is a full sized population otreatures whose genetmake up is determined by a
random process (Davis, 1991).

Methods of Selecting for Extinction or for Breeding

Once dull population of creatures established, each with a measure of fit{esf
cost) wecanfind an overalffitness. Ifthe overall fithess is10t yet ashigh as is desired
a portion of the leadit creatures in the population can be selected for extinclius.
can be referred to as an elitist natural selection operator (Davis, 1991).

Alternatively, an overcrowdingstrategy can be employed€arly GAs used a
replacement strategyhich maintained aonstant population byeplacingtwo parents

with their two offspring in each generation (Gen and Cheng, 1997). &tierward a
“crowding strategy” was inventeahich had asingle offspring replacing whichver of

its parents it most resemblethis can require a gene by gene comparisahethild

to each of its parents, and as such is quite expensive, computationally (Gen and Cheng,
1997).

Tournament selection is another technique for deciding which creatures to eradicate. In
this schemetwo creatures are chosen gpldyed off against eaabther- thewinner is
allowed toreproduce and/or the loser is selectedextinction (Rich, 1995). This is

said tomimic behaviour exhibited bgtags in large deer populations amtasionally

seen amongst humans (Heitkoetter, 1993).

Exactly how manycreatures are wipedut ateach generation is a question of some
importance. The proportion of prematieemination in the population creates what is
termed the selection pressure (Gen and Cheng, 838iFfMann, 1994)For example,

in naturallife forms events such as plaguesyrs, floodsfamines or iceages represent
periods in which selection pressures are quite high, in varying directions in each case.

In various GAs, the method stlectingcreatures fobreeding is handled in different
ways. Holland’s original model usesrethod where thbealthiestare mostlikely to
breed (Gen and Cheng, 1997). Other methods sabgdtvo creatures at random for
breeding. Selective breeding can be used in conjunction with the mbsence of an
Elitist Natural SelectioOperator- in either case the Gan perform evolution (Gen
and Cheng, 1997).

In highly evolved populations ofreatures, the process of speciatimgins. This is
where the intra-mating of some groups (terrfsgbcies”) causelsigh fitness offspring
of that species,while the mating of the species members with members of the
population who arenot of thatspecies produces extremely low fithess offspring,
termed “lethals.” Lethals rarely survive into the next generation (Heitkoetter, 1993).

The purpose o$elective breeding isoth to promotenigh fithesschromosomes (Gen
and Cheng, 1997) and to avoid the over production of lethals (Heitkoetter, 1993).

Crossover

Once parents have been chosen, breatheti canthen takeplace. A new creature is
produced byselecting, for each gene in the chromosomealkste fom either the
mother or the father. The process aaimbiningthe genes can be performed in a
number of ways. Theimplestmethod of combination isalled singlepoint cross-over
(Gen and Cheng, 1997; Buckles and Petry, 1997; Da®9@1)1This can be best
demonstratedising genesncoded inbinary, though the process is translatable to
almost any gene representation (Davis, 1991).

A child chromosome can be produceding single pointcrossover, as shown in
FIGURE 2. A crossover point iendomly chosen toccursomewhere in the string of
genesAll genetic material from beforthe crossover point is taken from one parent,
and all material after the crossover point is taken from the other (Davis, 1991).

The process of crossover can be performed with more than one crossover point (Gen
and Cheng, 1997). Indeed, every point can be chéserrossover if preferred
(Heitkoetter, 1993). One method of crossover, often useduiti-objective systems,

is unity orderbased crossover (Heitkoetter, 1993).this scheme, each gene has an
equal probability of coming from eith@arent- theranay be acrossover point place

after each or any gene (Heitkoetter, 1993).

Two parents have already been selected:

PARENT1: 101101010101001001001001110011100110101011101101
PARENT2: 010100111011010101110101001001101011001010010110

Choose a crossover point:

PARENT1: 1011010101010010 01001001110011100110101011101101
PARENT2: 0101001110110101 01110101001001101011001010010110

Perform crossover to produce a child:

CHILD: 1011010101010010 01110101001001101011001010010110

Which then becomes, a whole new chromosome:

CHILD: 101101010101001001110101001001101011001010010110

FIGURE 2: An Example of Crossover with Fully Encoded Genes

Mutation

After crossover is performed and before thdd is released into thavild, there is a
chancehat itwill undergo mutation. The chancetbis occurring is referred to as the
mutationrate. This is usuallykept quitesmall (Davis, 191). The purpose of mutation
is to inject noiseand, in particular, newalleles, intothe populationThis is useful in
escaping local minima as it helps explore new regiotiseahulti dimensional solution
space (Gen and Cheng, 1997). If a mutatate istoo high it can causevell bred
genes to be lost and thus decrease the exploitation diighditnessregions of the
solution space. Some systemsnmibd use mutatioroperators aall (Heitkoetter, 1993).
Instead, theyely onthenoisy (ie, diverse) random populations createchdialisation
to provide enough genehat recombination alone willyield an effectivesearch
(Heitkoetter, 1993).

Once a gene has been selected for mutat@enmutationtself cantake on anumber

of forms (Davis, 1991). This, again, dependglmmimplementation othe GA. In the
case of abinary string representation, simple mutation of a single gene cdhbaes
genes value to be complemented- a 1 becomes a 0 angksgee This is analogous to
the effect of stray ultra violelight upon genes inature (Gen and Cheng, 1997). The

8

genetic sensitivity which allows light to cause various forms of cancer alsdifeetps
this planet to search the solution space of the ultimate question.

In the case of non binary gene representations, more cumbersome methods of mutation
are required. Fanteger or real number representations, a common methocdlta
zeromean Gaussian number ttee original value. Inmore complexdata types a value

can be randomly selected fromlibrary of possible values. In argase,all that is
required is that the method of mutationgeneral enougthat it can cause the
appearance any possible allele withithe population (Davis, 1991). $eems that in

more highly decoded genetic representations, mutation becomeseasingly
complicated.

Inversion.

In Holland’s foundingwork on GAs he made mention @nother operatoihesides
selection, breeding, crossover and mutatiuhich takes place in biological
reproduction.This is known aghe inversionoperator(Davis, 1991). Aninversion is
where a portion of a chromosomes detaches fromeasieof the chromosoméien

changes direction and recombines wilie chromosomeThis is demonstrated in
FIGURE 3.

Chromosome
before Inversion: 001001011010100101011010010100101010001010
During Inversion: 00100101101010 01010110100101 00101010001010

01010110100101
One portion inverts: becomes
(order is reversed) 10100101101010

Recombination: 00100101101010 10100101101010 00101010001010
After Inversion: 001001011010101010010110101000101010001010

FIGURE 3: The Inversion Operator

The process ofnversion is decidedlynore complex toimplementthan the other
operatorsinvolved in genetic algorithmsBecause of this, and because GAs can
perform evolution without inversion, it is generatigt used (Davis 991). However, it

is suspected that in the highly complex GA problems of the future, inversion might play
a vital role (Davis, 1991). Gen and Che(t997) mentionthe use of annversion

technique of mutation (amongsthers) in a GA solution to &avelling salesperson
problem.

Lamarckian Operators.

In order to optimise performance of a GAnany applications also applpther
techniques to the chromosomé&ar example,after a chromosome has been bred, it
might be possible to apply locdill climbing techniques or greedy algorithms to
improve the chromosomeditness, prior to evaluationThis is referred to as
Lamarckian Evolution in Gen and Che(i97), as amnalogy to Lamarck’s theory
of adaptation invhich lessons learned from experiencesurring in thelife of an
organism can be passed on to its offspring (Gen and Cheng, 1997).

Memetic Algorithms.

Memetic Algorithms (MAs)are oftenexplained as follows. In GAghe unit of
information is a gene, and thisgenerallypassed on, intackkom onecreature to the
next. In MAs, the unit oinformation is a “meme,” and eadneature interprets/alters
the memavhen it is first receivedBurke, Newall and Weare, B%). This is based on
an analogy witlthe way thatinformation passed frorperson to person is interpreted
and considered by each person (Gen and Cheng, 19Big)reduces theoverall
solution space, thereby enabling a sufficient search in less generations (Gen and Cheng,
1997). Lamarckiaroperatorsapplied in conjunction with this interpretation of the
meme caneffectively compress a large search space intenaller once by only
considering local optima. This can decre#ise number of generations required to
optimisethe solution, but imight also increasthe time taken to perform each step
(Burke, Newall and Weare, 1995).

Repair Strategies.

Some representations of genes can cause offsfiraigare outside theearch space
(Gen and Cheng). Consider a systehich breeds lecture timetableBwo timetables,
chosen as parentsjight each havenly one instance of each claséet, if these
parents ar@otidentical, then a&hild produced by their crossoveright have multiple
bookings of some classes. Such a timetable migloub®de the search space of the
problem- in whichcase a repair strategy could be used to remap the chromosome to
within the search spac€or this examplethe repair strategy would alter tlehild’s

genes to ensurdhat exactly one booking of eachklass is made in week. Another

10

scheme involves immediatehgjecting anychromosomewhich is outside the search
space of the problenAlternatively,there could be a largeenaltycost fortimetables
with multiple bookings. This can kermed apenalisingstrategy and it requires the
searching of a much larger seasgace. Gen and Cheri@997) indcatethat repair
strategies have been shown to converge far moiekly than penalty strategies and
rejection strategies.

Thefinal stage in theyenesis of areature is taleterminethe creature’ditness. This
process is performed in the same way as it was during initialisation (Davis, 1991).

Each iteration of the process is termed a generation. The process can tevimemaite
has either run for presetnumber of generations (Goldberg,899, or ithasproduced
a sufficiently fit populationor, perhaps, at least orsaifficiently fit individual creature
(Heitkoetter, 1993).

Optimising Genetic Algorithm Performance

“the problem of tuningthe primary algorithmpresents a secondary, oretalevel,
optimisation problem.” (Grefenstette 1986, p 5)

It can be seethat inany implementatiothere are amumber of variablethe value of

which will changethe speed andffectiveness othe evolutionary proces¥ariables

include mutatiorrate,selection pressur@umber ofcrossovers, constraimeightings

and soon. In morecomplex implementationthere are a greatearumber of these
variables.For each of theseariablesthere is a range o¥alues whichprovide a
working GA. But various combinations of values, at different times, will provide
better performance (Grefenstette, 1986). There are many techniques which can be used
for determining optimum valuef®r thesevariables (Ravise, Sebag and Schoenauer,
1995). GAs themselveare of one of these methods (Heitkoetter, 1993). It is
theoretically possible to have GAs driven by GAs, ad infinitum.

Applications of Genetic Algorithms

Unlike most methods otombinatorial optimisation, GAs didot initially have an
underlying mathematical model. Asuch, they spent som&me demonstrating
themselves on a number of famous mathematical problems (sudheasavelling
salesperson problem atite k-armedbandit problem) before tackling more practical
issues (Davis, 1991).

11

By 1989 when David E Goldberg releadbd seminal“Genetic algorithms in search,
optimisation andmachine learning”’the field had begun the brightest phase of its
career- that of Being Applicable to Real World Problems (Davis, 1991).

Any problem which can bphrased so as to require thnimising or maximising of
some function can be addressed by GAs (Davis, 1991). In particular, Wihere
function is dependent upon great many variables, such that more conventional
methods areut of their depth, evolutionary methods become attractive (Corne and
Ross, 1995).

Particularly notewdhy applications of GAinclude the solving of pipe network

optimisation problems (Anderson and Simpsb®96) transportatioproblems (Gen
and Cheng, 1997) conformatiorabalysis ofDNA (Davis, 1991)image processing
andmachine learningBuckles and Petry, 1992) and, of courseheduling problems
(Burke and Ross 1996; Buckles and Petry, 1992).

GAs are by theivery nature,easilytranslated tgarallel systems (Davis991). Each
creature is to some part separate from each other creature and related, to some degree.
At the moment of breeding andeath, there must be some interaction between one
creature and theolony (or some portion of the colony). Tournament selection is a
method of choosing for extinctio(or for selecting for breedingyvhich is most
effectively executed on parallel system. In thisase, it isnot necessary foany one
machine toknow the averagétness ofthe entire populationpnly for the machines
possessing the combatantsbitefly communicate. The application of GAs parallel
architectures has seen a large improvement in their performance, aockdiasl a
large amount of interest (Davis, 1991; Buckles and Pe®97)1 This appears to be
the major direction in which GA is heading.

GAs are advancing by containing less of a close metaphor with natural evolution-
instead conformingnly to that essence of evolution which allows it weork. For
example,data structures aneplacing binary numbers a@se mostcommon form of
representing genetic material. In modern GAs, chromosameasrely fully encoded
(Davis, 1991).

12

Automated Timetabling

UQ St Lucia campus hawer ten thousand students, partakingpproximately three
thousand classg®er semestefUniversity of Queensland, 1997). Tpeoduction of
suitable timetables each semester represents a large scale optimisation problem.

Timetables at UQre currentlydevised by a software application entitled Tiavhich
was written by a&ompany named Opcom. Opcom is also respongibidne TransInfo
public transportinformation system, and a number ather large scale optimisation
problems in Queensland (Opcom, 1996). Tlash resolution methodghich they use
do not employ Genetic Algorithms.

Automated methods used to solWenetabling includeTabu Search,Simulated
Annealing, Evolutionary Algorithms andrtificial Intelligence (D. de Werra, 1995).
There are aumber ofpaperswithin Burke and Ross (199@hat dealspecifically with
GA methods of automatdanetabling. InCorne and Ross (1996) iti®ted thabonly
on particularly complex oresource starvedimetabling problems do Evolutionary
Algorithms (including GAs) begin to outperform methods such as hill-climbing.

Professional software currentlpvailable for Automated Timetabling lacks the
generality required by different institutioriBurke and Ross, 1996].his canmean
that codeneeds adjustment or lengthy training and installgpiemgrams before it can
be implemented at an institution which it was not intentionally written for.

Soft and Hard Constraints.

A timetable is essentially a schedule whiclust suit a number of constraints.
Constraints are almoatniversally employed bypeople dealing withtimetabling
problems(Burke and Ross, 1995). Constraintsium, arealmostuniversallybroken
into two categories: soft and hard constraints (Burke and Ross, 1995).

Hard constraints are constraints,vdfich, in anyworking timetable, there will be no
breacheskor example, a leiarer cannot be itwo places at once (Erben and Keppler,
1995; Rich 1995). An extensive list of hard constraints is provided as FIGURE 4.

Soft constraints are constraimt&ich may bebroken, but ofwhich breachesust be

minimised.For example, classes should beoked close to thbome department of
that class (Erben and Keppler, 1995o0ft constraintanentioned in various papers

13

show drastic differences. Also tharder ofimportance appears to be a source of
contention. Examples of some common soft constraints are provided in FIGURE 5.

In addition to constraints, there ar@amber of exceptions whiamust be taken into
consideration when constructing an Automated Timetabling system. A number of these
are listed in FIGURE 6.

Classrooms must not be double booked.

Every class must be scheduled exactly once.

Classes of students must not have two bookings simultaneously.

A classroom must be large enough to hold each class booked to it.

Lecturers must not be double booked.

A lecturer must not be booked when he/she is unavailable. For example,|a
lecturer might have prior commitments.

Some classes require particular rooms. For example, experiments might pe
held in particular laboratories.

Some classes require classrooms to have particular equipment. For example
audio visual equipment.

Some classes need to be held consecutively. Consider a six hour-long practical
experiment.

FIGURE 4: An Extensive List of Hard Constraints.

Some lecturers do not wish to have classes assigned consecutiiraly in t

There are preferred hours in which a lecturer’s classes might be schedulg

The distance a lecturer walks should be minimised

Most students and some lecturers do not wish to have empty periods in their

timetables.

Classes should be distributed evenly over the week.

Classrooms should be booked close to the home department of that clags.

Classrooms should not be booked which are much larger than the size of the
class.

4
.

FIGURE 5: A List of Soft Constraints.

14

A timetable might cover more than one campus

Timetable requirements might vary from one week to the next.
More than one member of staff might need to be assigned to a particulaf class.
A classroom is not needed for a field trip.
Interdisciplinary subjects might be studied.

FIGURE 6: A Short List of Exceptions

Other Applications of a Lecture Timetabling GA

Exam Timetabling is one of the most closely related disciplinégttureTimetabling,
and it is also approachable using GA meth@igke and Ross, 1996ssentially the
same structure as used in a GA Lecture Timetabling system can be applied to the Exam
Timetabling problen{Burke, Newall and Weare, 1995The rules used fogvaluating
each proposedexam timetable must beewritten accordingly.Minimising of an
individual's stress igarticularly important irexam timetabling, so rules such as “No
student should stivo exams inthe one day” argiven highpriority (Ergul, 195). In
Exam Timetabling the exact enrolment is known (unlikeanturerTimetabling where

it is based on predicted enrolment). Considerations must be therefore baahadé
on the basis of each class, but on an individual student basis (Ergbl), THis greatly
increaseshe size of a chromosome, anteates @onsiderable difference between the
performance parameters of Lecture and Exam Timetabling GAs.

Wherever there is anaximum stress, minimum resource (Rich, 1995multiple
objective timetabling problem then a GA similar to a Lecture Timetabling system might
be applicabldCorne and Ross, 1995). Consider fneblems of scheduling of large
transport systems, rostering in largeorporations, multi-level job-scheduling in
operating systems the timing constraints of intricate digital circuits afattboDavis,
1991).

15

CHAPTER 3: METHOD

The Simplified Lecture Timetabling Problem.

The AutomatedTimetabling system devised in this thesis deals withinaplified
version of the University Timetabling problemThe rationale forsimplification,
however, is that the program ssitably complexthat it could bescaled tothe full
problemwithout any need to modifits architectureThis is done irtwo ways. Firstly,
only afraction of the hard constraints are placed ontithetables which it produces.
Those considered are shown in FIGURE 7. Soft constraintscar@corporatednto
this GA. The theorpehind addingll of the constraint§includingthe soft constraints)
is includedlater. Secondly, thesize of the fictional university with which we are
dealing is only a fraction of the UQ timetable.

Classrooms must not be double booked.

Every class must be scheduled exactly once.

Classes of students must not have two bookings simultaneously.

A classroom must be large enough to hold each class booked to it.

Lecturers must not be double booked.

A lecturer must not be booked when he/she is unavailable. For example,|a
lecturer might have prior commitments.

FIGURE 7: Hard Constraints Used in The Simplified Timetabling Problem.

Implementing a Timetable as a Genetic Algorithm.

In this thesis a C program was developddch employed GAmethods to perform
Automated TimeTabling. Consequentlythe program was entitled “gaatt.c’ The
complete source code of this program is included as Appendix B.

The GA operates upon a populationtiofietables whichare maintained in memory.
Each timetable is evaluated by testthg number of times it breaches each constraint.
Thus timetablesre evolved with aminimum number of constraint violations. A top
level description of “gaatt.c” is provided as FIGURE 8. It can be seenthisat
structure issimilar tothe pseudo codgiven inFIGURE 1, with themajor difference

16

beingthe incorporation of a repair strate@xplanation of each dhe components of
the program are given in the remainder of this section.

Load all constraint data from a constraint file.
While the population size is less than the maximum:
{
Create a new timetable with no classes booked to it.
Repair the new timetable by using the constraint data.
Evaluate the cost of the new timetable by using the constraint data.
Enter the new timetable into the population.
}
While the cost of the best timetable is greater than zero:
{
Discard a portion of costly timetables.
Repeat until the population size is maximum:
{
Breed a new timetable.
Mutate the new timetable.
Repair the new timetable by using the constraint data.
Evaluate the cost of the new timetable by using the constraint datg.
Enter the new timetable into the population.
}
}.

FIGURE 8: Top Level Description of “gaatt.c”

Constraint Data

In order to test for each of the types of hard constraint it is necessary teusficrent
detail about theuniversity. This meanghat information concerningall lecturers,
classrooms and classes must be maintained. The wealyicgh each othese datéypes
are implemented will now be given in detail.

A lecturer is a structured data typd@th one field- an availability timetable. An
availability timetable is an array which indicates (using 1s @s)dwhether the lecturer
is available or unavailable tecture during eachour in the week. Ihis way prior
commitments can be taken into consideration.

A class is astructured typewith threefields. Each class has a certain size (predicted
size), a lecturenumber and a number indicatitige codenumber ofthe group of
related classes tavhich it belongsFor example,corefirst year engineering subjects
might formone set of relatedlasses, and would each have shene number in their
related class field. Each class acamly be listed as belonging tone set of related

17

classes. This is simplification whichignores more complex relations between classes,
for example, where classes are studied by more than one faculty.

In this simplified GA a classroom has only one field, the capacity of the room.

The set of all lecturers is stored as an array. Similarly, there are arrays of classes and of
classrooms. Each of these elementidastified uniquely byts position in theelevant
array.

The set ofall information concerning lecturers, classes and classrooms is termed the
constraint data. Each time “gaatt.c” executes it l@ldsonstraint data from a tefide

with a “.ctr” extension. EaclHdifferent “.ctr” file describes a different university
problem.

It should benoted thatinformation considering eadhdividual student is notised in

this Lecture Timetabling System. This is because timetables must presumably be
produced at ime of year when enrolmenégge notyet finalised. Infact students are

to some extent expected to use class timetables of the semester to aid in the decision of
which subjects they enrol in (University of Queensland, 1997). As suvidual
students cannot be considere@lass sizesfor example, would be determined by an
expected number of students.

Timetables.

The timetabldfor a single room is &vo dimensionalarray as shown in FIGURE 9.
The timetabldor an entireuniversity istherefore a collection abom timetables- one
for everyroom in theuniversity- as shown iRIGURE 10. Times at whiclthere is no

class booked hold a NULL booking, which has a value of zero.

Proposed timetable for Room 1

Time| Mon Tue Wed Thu Fri
8-9 23 0 54 0 34
9-10 12 0 7 23 9
5-6 0 161 0 17 0

FIGURE 9: Example of a single room timetable.

18

Proposed Timetable for Room 1

M T W T F
89 | 23 0 54 0 24 T
910 | 0 0 7 0 23
56 | 0 161 | 0 7 | o

One room timetable for each room in the university.

FIGURE 10: An Entire University Timetable.

Colony of Timetables

Population size y
Average cost 104
Average # Error 1 4
Average # Error 2 14
Average # Error 3 13
Average # Error 4]
Pointer to First Pointer to Last
timetable timetable
NEXT
/\
Proposed Timetable for Room 1 Proposed Timetable for Room 1
M T W T F M T w T F
8-9 7 8 76 13 43] 8-9 14 0 54 0 64
91 13 54 0 10 34] 910 0 0 87 39 0
0
5-6 0 15 12 0 16 } 5-6 8 13 0 42 0
i
|
|
|

FIGURE 11: A Colony Containing Two Timetables

19

A university timetablestoresinformationabout whatlassesare booked in eaatoom,
at anyhour of the day, omany day ofthe week. Each of these bookings NULL
bookings) is one gene. A timetable also has fields which degdelbede) some aspect
of this genetic information. A timetable hadield which storesits cost. Italso has
fields which store the number of breaches of each type of hard constraint.

A population (or colony) is a collection of timetables. A population iiself a
structured typewith a number of fields. It contains pointer to the leastostly
timetable inthe population(which has, inturn, a pointer to the nexeast costly).
There is also a pointer to the most costlyetable inthe population, asell as a field
storing the averageost,and the averageumber of violations of each type of hard
constraint. Afield is also included whictrecords thenumber of timetables in the
population. FIGURE 11 shows tley in which apopulation is comprised oflmked
list of timetables.

A colony of creatures is therefore sangly-linked list ofstructured types (creatures)
containing timetablelata (genes) in a thre@mensionakrray. The timetablesre kept
in order from least costly to most costly.

This method of genespresentatioomeansthat it is notpossible to havéwo classes
booked to the same room at game time. As sudere is one less hard constraint to
be considered when evaluating timetables.

Repair Strategy

A repair strategy is usednhich ensures hat all classesappearexactly once. For
robustness, this is done in two stages. Firstly, any clagsels appear more than once
are (nondeterministically)altered suchthat they appearonly once, as outlined in
FIGURE 12.Secondlyany classes which didot appear aall are booked to a spare
space (regardless of room size, etc) as outlined in FIGURE 13.

20

For each class:
set the Count to O.
for each time:
for each room:
If the current class is booked at this location:
Add 1 to the count.
Add the location of this class to a linked list.
If the class occurred more than once then:
keep doing the following until there is only one booking left:
randomly choose one of the bookings.
turn it into a NULL booking.
Free the linked list.

FIGURE 12: Pseudo Code for the First Stage of the Repair Strategy

For each class:
For each time:
Look in each room until either the class is seen or you get to the gnd.
If you got to the end without finding the class then randomly find &
NULL booking and book that class to it.

FIGURE 13: Pseudo Code for the Second Stage of The Repair Strategy

If this repair strategy is applied to an empty timetable the result is a timetable with each
classbooked to a randorime and place. As sucthe repair strategy is also used for
initialising a random population.

The use of the repair strategy ensufest eaclclass isbookedexactlyonce. Hence,
the number of hard constraintghich must be considered when timetabées being
evaluated is further reduced.

It has so far been showthat the hard constraintslassrooms mushot bedouble
booked” and “everglass must be scheduled exadatyce” have beenratisfied by non
genetic means.

Evaluation of a Timetable

The remainingfor types of hard constraints are used in ¢kialuation of timetables.
They are each considered tiarn, as shown in the pseudo code of FIGUREThis
method could be extended tny amount of hard constraints. Soft constraints

21

violations are not calculated in “gaatt.c”. If they were, then they would be evalu

ated in

preciselythe same manner as hard constraiiitsis concept is explored thoroughly in

the discussion section.

For the timetable being evaluated:
Initialise the cost field to zero.
For each of the hard constraints:

Record how many times that constraint is violated.

Add the count (multiplied by the weightingfor that particular

constraint) to the timetable’s cost field.

FIGURE 14: Pseudo Code for Using Multiple Constraints to Evaluate a

Timetable

Each type of hard constraint will now be considered in turn. Thraughthe

remainder of thipaper these four constraints always considered ithe sameorder.
This is purely for the sake of consistency.

Related Class Clash Errors

For each timetable it must be determirtegalv manytimes related classese booked

simultaneously. The method for doing this is given in FIGURE 15. An error of th

is sort

implies that an entire class load of students is expected to be in two places at once.

For each group of related classes we must check:
For each time:
For each room:

Does the class booked at this time belong to the current grnoup

of related classes? If so then add “1” to the Count.
If (Count>1) then
Record (Count-1) more “Related class clash” errors.

FIGURE 15: Pseudo Code for Assessing the Number of Related Class Clash

Errors

22

Room Too Small Errors.

The number oRoom Too Small Errorsmust also be evaluated. This calculates how
manyclasses in a timetabd&e booked to roomshich aretoo small toaccommodate
them. A pseudo code description of the search for RbBomSmall errors isgiven in
FIGURE 16.

For each room we must check:
For each time:
For each class, given that the room is THIS big
Is the size of the class bigger than THIS? If so then add “1’| to
the Count.

Record (Count) more “Room too small” errors.

FIGURE 16: Pseudo Code for Assessing the Number of Room Too Small Errors

Lecturer Double Booked Errors.

A count is performed to see how often lecturers are expected totwe {for more)
lectures at once. Pseudo code for this is given as FIGURE 17.

For each lecturer we must check:
For each time:
For each class:
Is this class taught by the current lecturer? If so then add “1” to
the Count.
If (Count>1) then
Record (Count-1) more “Lecturer double booked” errors.
FIGURE 17: Pseudo Code for Assessing the Number of Lecturer Double Booked

Errors

Lecturer Unavailable Errors.

As well aslecturershavingmore than one lecture at a time, therthespossibility that
they will have lectures atimes when they haverior commitments. Tgenalise such
cases dest isperformedwhich countsall instances when thegre booked t@ive a

23

lecture at a time when they have indicatedtthey have prior commitmentBseudo
code for this is provided in FIGURE 18.

For each lecturer we must check:
For each time, given that at that time the Lecturer’s “Availability chart” shpws
either a 1 (available) or O (unavailable):
For each room:
Is the lecturer of that class the current lecturer?
If so then if the lecturer is unavailable add “1” to the Count.
Record (Count) more “Lecturer Unavailable” errors.

FIGURE 18: Pseudo Code for Assessing the Number of Lecturer Unavailable

Errors

Selecting Timetables for Extinction

An elitist natural selectiomperator is usedBecause thdimetablesare kept in an
orderedlinked list this is particularly easy to implement. In eggneration dixed
portion of the timetables are eradicated. For the purpodbs dhesighe portion was
maintained at50%. Pseudo code dhis elitist selectionprocess is provided as
FIGURE 19.

Work out how many timetables are going to survive.

Sort through the list until you find the last one to survive.

Assign that one as now being last in the population.

Systematically free each of the remaining timetables from the memory.

FIGURE 19: Pseudo Code for Selecting Timetables for Extinction

Breeding Timetables

Timetablesare randomly selected fronthe population and used for breeding. No
favouritism is given tditter timetables. Achild timetable idored by performingunity
orderbased crossover on the pareiiisis meanghat each parertas an equal chance
of providing each gene.

24

Mutating Timetables

The method of mutation igiven inFIGURE 20.This meanghat thechance of any
one gene undergoing mutation is approximately ttheemutatiorratedivided by one
thousand. A mutation rate equal to ten,dgamplejmplies thatapproximately twenty
in every thousand genes will be mutated.

There is a fixed mutation rate.
For each gene
{
Randomly choose a number between 1 and 1000.
If the number is less than the mutation rate then
{
Randomly choose a gene from the current timetable and swap it with
the current gene.
}.
}.

FIGURE 20
Pseudo Code for Method of Mutation

This method should be&calable tahe complete problem. The incorporation of further
constraints, and thepscaling ofthe problem size shouldot requireany changes to
the overall architecture.

Experimental Procedure

There wereseventests performed on “gaatt.c’. Thigst five tests dealtwith
evaluatingthe performance of the GA witifferent weightings orthe constraints.
Test 6 looked at theffect ofthe rate ofmutation on the speed of evolutiofest 7
looked at the effect of the population size on the speed of evolution.

For the purposes of these tests constraint data were createdi@atn using a Pascal
programwhich would outputvalid text files for "gaatt.c" to read. The parameters of
this constraint data were as follows. There were 200 cldsalésf whichbelonged to
anyone offifty related clasgroups. There werfifty lecturers, lecturing an average of
four classes, andvailablefor lecturing throughoutseventy percent athe working
week. There werdifteen rooms withsizes evenhdistributed between 300 and 50

25

seats. Thelass sizesvererandomlychosen, with equarobability of selection at all

sizes between 0 and 250.

Tests 1 to 5: The Effect of Several Different Constraint Weightings.

In thefirst five tests the populatiosize waskept at threeand the mutatiomate was

kept at sixteen. The weightings used are as shown in Table 1.

TABLE 1: WEIGHTINGS OF EACH TYPE OF HARD CONSTRAINT
VIOLATION IN TESTS1TO5

Test 1 Test 2 Test 3 Test4 Testsh
Related Class Clash Errors 1 0 0 0 1
Room Too Small Errors 0 1 0 0 100
Lecturer Double Booked Errorsy 0 0 0 1
Lecturer Unavailable Errors 0 0 1 20

Test 1: Related Class Clash Errors.

The purpose ofest 1was to see howvell “gaatt.c” performedwhen onlyRelated
Class ClasltErrors wereconsidered. This shoulechean that optimisatioproceeds in
the direction otimetables with no Related Class Cl&sinors. Assuch,all othertypes

of errors weregiven no weighting- in essence thaere left out. “gaatt.c” was
executeduntil it terminated correctly (ie, evolved a timetable witbost of zero) or it
stagnated. The average cost of the population after each generation was r@tusded.
test was repeated until results were clear.

Test 2: Room Too Small Errors.

In Test 2only RoomToo Small Errorswere considered. “gaatt.c” was executed until
it terminated correctly (ie, evolved a timetable witbost of zero) or it stagnated. The
averagecost of thepopulation after each generation was recorddds test was
repeated until results were clear.

26

Test 3: Lecturer Double Booked Errors.

In Test 3only Lecturer DoubleBooked Errors wereonsidered. “gaatt.c” was
executeduntil it terminated correctly (ie, evolved a timetable witbost of zero) or it
stagnated. The average cost of the population after each generation was r@tusded.
test was repeated until results were clear.

Test 4: Lecturer Unavailable Errors.

In Test 4only LecturerUnavailable Errorsvere considered. “gaatt.c’ was executed
until it terminated correctly (ie, evolved a timetable with a cost of zero) or it stagnated.
The averageost of thepopulation after each generation was recorddis test was
repeated until results were clear.

Test 5: Test of Four Weighted Hard Constraints.

In Test 5all four types of hard constraimtrror wereconsidered. Their weightings
were: 1, 100, 1, 2@espectively. These weightinggere chosen as they weteought

to reflect thedifficulty of removing each type of error, respectiveligaatt.c” was
executeduntil it terminated correctly (ie, evolved a timetable witbost of zero) or it
stagnated. The average cost of the population after each generation was r@tusded.
test was repeated until results were clear.

Test 6 and Test 7.

The sixth and seventtest also employed‘gaatt.c”. Weightingsused on the hard
constraints were theame ador thefifth test. Thatis: 1, 100, 1 and 20 foRelated
Class ClastEerrors, RoomToo Small Errors, LecturerDouble Booked Errors and
Lecturer Unavailable Errors respectively.

Test 6: Mutation Rate Test.

The population size was fixed at three, and the mutation rate was varied.

With a mutationrate of 0, the GA was ruantil five hundred timetables hdoeen
generated and the averagest of theresultant population was recordedhis
procedure was then repeated withnymutation rates between 0 and 500. Extigds
were performed where results were unclear.

27

Test 7: Population Size Test.

The mutation rate was fixed at sixteen and the population size was varied.

With a population of three, the GA was runtil more than 50@imetables hadbeen
generated, and the averagest of theresultant population was recordethis
procedure was then repeaigith every population size up ®0. Memory limitations
stopped the test from going further. The test was repeated until results became clear.

28

Chapter 4: Results of Tests on “gaatt.c”

Tests 1-5

FIGURES 21 to 29 show the performance of “gaatt.c’tasts 1 to 5. Further
information is given in Table 2, and in the following descriptions.

Test 1: Related Class Clash Errors

Test 1 was repeated lttmes. In each castgaatt.c” successfullyeradicated all
instances of Related Class Clash Errors. This took an average of 55.1 generations, with
a standard deviation of 24.4 generations.

The average number of Related Class Clash Errors after each generation was recorded,
for each iteration of théest. These results were then averaged andda@ayed in
FIGURE 21.

Average Number of Related Class Clash Errors vs
Number of Generations for Test 1

Class Clash Errors

Average Number of Related

~ O o M 1 N~ O 9o
M T © N~ 0o o O «
-

- ™M™
—

133
145
157
169

Number of Generations

FIGURE 21: Average Number of Related Class Clash Errors vs Number of

Generations for Test 1

Test 2: Room Too Small Errors

Test 2 was repeated 1times. In each castgaatt.c” successfullyeradicated all
instances of Room Too Small Errors. This took an average of 1270.6 generations, with
a standard deviation of 177.9 generations.

29

The average number &oomToo Small Errorsafter each generation was recorded,

for each iteration of théest. These results were then averaged andda@ayed in
FIGURE 22.

Average Number of Room Too Small Errors vs Number
of Generations for Test 2

Errors

Average Number of Room Too Small

97
193
289
385
481
577
673
769
865
961

1057
1153
1249
1345
1441
1537

Number of Generations

FIGURE 22: Average Number of Room Too Small Errors vs Number of

Generations in Test 2

Test 3: Lecturer Double Booked Errors

Test 3 was repeated 1tnes. In each castgaatt.c” successfullyeradicated all
instances oflLecturer Double Boked Errors.This took an average of 59.8
generations, with a standard deviation of 39.5 generations.

The average number dfecturer Double Boked Errors afterach generation was
recorded, for each iteration of thest. These results were then averaged and are
displayed in FIGURE 23.

Test 4: Lecturer Unavailable Errors

Test 4 was repeated lt#mes. In each castgaatt.c” successfullyeradicated all
instances of_ecturerUnavailableErrors. This took anaverage of 293.1 generations,
with a standard deviation of 73.0 generations.

30

Average Number of Lecturer Double Booked Errors vs
Number of Generations for Test 3

= = N N w
o a1 o a1 o
| | | |
t t t f

Double Booked Errors

()]

Average Number of Lecturer

o

1
6
11
16
21
26

o © d © 4 © +d © «H ©
© ~ ©~

- ©
M MO < I 0O . © 0 o O

Number of Generations

FIGURE 23: Average Number of Lecturer Double Booked Errors vs Number of
Generations for Test 3
The average number dfecturer Unavailable Erors after eachgeneration was

recorded, for each iteration of thest. These results were then averaged and are
displayed in FIGURE 24.

Average Number of Lecturer Unavailable Errors vs Number
of Generations for Test 4

25

20 -

15 +

Errors

10 +

Average Number of Lecturer Unavailable

- N O < IO ©O© N~ 0 0O O «H N M < 1 ©O© N~ 0o O
N < © 0 O N ¥ © O <« ™M 1 I~ O «d ™M 1 I~
- = 4 «+d4 < N N N N N M MM M m

Number of Generations

FIGURE 24: Average Number of Lecturer Unavailable Errors vs Number of

Generations in Test 4

31

Test 5: Test of Four Weighted Hard Constraints.

Test 5 was repeated 6 times. In each case “gaatt.c” successfully eraglicastdnces
of Hard Constraint ViolationsThis took anaverage of 4098.2 generations, with a
standard deviation of 606.5 generations,

The averagecost of thepopulation after each generation was recorded,efmh
iteration of thetest. These results were then averaged anddes@ayed inFIGURE
25.

Average Cost vs Number of Generations for Test 5

8000

7000 l
6000 -
5000 +

4000 +

Average Cost

3000 +

2000 +

1000 +

S K~ M O 0N d N~ MM 0O 1 o N~ M O 1 o d N~ M O
0 K~ D I M d4 O O N O I 0O 4 O O N~ O <
N IO 0O « < N~ O N I 0 oI I N~ O N 1 0 o

I 4 4 N N N N O O OO0 I F T I w0

Number of Generations

FIGURE 25:Average Cost vs Number of Generations for Test 5

Also, the averag@umber of Related Class Cla&lrors aftereach generation was
recorded, for each iteration of thest. These results were then averaged and are
displayed in FIGURE 26.

The average number &oomToo Small Errorsafter each generation was recorded,
for each iteration of théest. These results were then averaged andda@ayed in
FIGURE 27.

The average number dfecturer Double Boked Errors afteraeh generation was
recorded, for each iteration of thest. These results were then averaged and are
displayed in FIGURE 28.

32

o

FIGURE 26: Average Number of Related Class Clash Errors vs Number of

Generations for Test 5

FIGURE 27: Average Number of Room Too Small Errors vs Number of

Generations in Test 5

33

Average Number of Lecturer Double Booked Errors vs
Number of Generations for Test 5

Average Number of Lecturer
Double Booked Errors

I M 1O N~ O o M 1 N~ 0O «d M 1 N~ OO oI ™M 1 I~
D 0 N~ © O 1 ¥ O &N N d O O 0 W N~ ©
N 1D O 4 < N~ O M © O N I N~ O M o o

I 4 <4 N N N N O MO0 0 JF I I T w0

Number of Generations

FIGURE 28: Average Number of Lecturer Double Booked Errors vs Number of

Generations for Test 5

Average Number of Lecturer Unavailable Errors vs
Number of Generations for Test 5

25

20 -
0
=
8
=
S 15+
c
(5]
O}
5 10 +
=
(]
€
S 54
z
0
- 1 O M N~ «HG 1 o ™ N~ o n o M K~ « 1 o o™
» 00 0 N~ N~ O 1 1 Y M N N 4 <4 O O O
N 1D O « < ~ O M O O [I g N~ O
- <4 <= N N N « M O 0O 35 v T < o

Average Number of Lecturer Unavailable Errors

FIGURE 29: Average Number of Lecturer Unavailable Errors vs Number of

Generations for Test 5

The average number dfecturer Unavailable Erors after eachgeneration was
recorded, for each iteration of thest. These results were then averaged and are
displayed in FIGURE 29.

34

Test 5 was also used to determine the speed at which generations were run. Tests were
performed on a 100 MHz 5x86. The aver#éiges taken to evolve aostfree solution

was thirteen minutes and eight secondghéteforetook approximatelyd.192 seconds

to explore each timetable the solution space. Notéat this includeghe time taken

to progressivelstore the cost of eadeneration in a textle, sothe performance of

the GA itself would be moderately faster.

TABLE 2: SUMMARY OF RESULTS FROM TESTS 1 TO 5

Test 1 Test 2 Test3 | Test4 Test5

Number of times test was 15 11 16 12 6
repeated
Mean number of 55.1 1270.6 59.8 293.1 4098.2

Generations required to
reach cost of 0,

with Standard Deviation 24 .4 177.9 39.5 73.0 606.5

Test 6: Mutation Rate Test.

Test 6 wagerformed foffifty different mutatiorratesranging betweezeroand 500.
Most of the rates tested were in the regzeno tofifty, because theutput fromthis
region showed the most variation. Tiestwas repeated fourmes at each mutation
rate chosen. A graph of thaveragecost of thetimetable afterfive hundred
generations versus mutation rate is given as FIGURE 30.

Test 7: Population Size Test.

Tests 7 was repeated thrimesfor all populations from 3 to 305izes outsidehis
range couldot beimplemented onthe currensystem. A graph ahe averageost of
the timetable aftefive hundred generations versus mutatiate isgiven asFIGURE
31.

35

Average Cost after 500 Generations vs Mutation Rate for
Test 6

7000

6000

5000 -

4000 -

3000 +

2000 -

Average Cost after 500 Generations

1000 +

0 f f f f
0 100 200 300 400 500

Mutation rate

FIGURE 30: Average Cost after 500 Generations vs Mutation Rate for Test 6

Average Cost After 500 Generations vs Size of
Population in Test 7

Average Cost After 500 Generations

Size of Population

FIGURE 31: Average Cost after 500 Generations vs Size of Population for Test 7

36

Chapter 5: Discussion

Review of performance of “gaatt.c”

The most important question thadn be asked ainy AutomatedTimetabling system

is whether ornot it is capable of producing timetables completely free of hard
constraint violations. The results dest 5 showed that “gaatt.c” succeededhis
regard. Inevery trialthe program converged orsaitable population. On averaties
required that 4098.2imetableswere searchedThis is a pleasingesult which
demonstrates the power of GA techniques on Automated Timetabling Problems.

Performance of “gaatt.c” in Tests 1 to 4

Tests 1 to 4 were each concermveith the reduction of one type of hard constraint
violation (or “error”). In each case, “gaatt.successfullyemovedall instances of the
error in question.

As can be seen in TABLE 2 thisok adiffering amount of generations for each type
of error. RoomTloo Small Errorstook decidedly longer teeradicate than did each of
the other errotypes of error. Lecturetdnavailable Erors tookconsiderably longer
than did Related Class Clash Errors and Lecturer Double Booked Errors.

One possiblereason for theséwo types of errorstaking so much longer to be
eradicated relates to their caud®oth Room Too Small Errors and Lecturer

UnavailableErrors are single gene erroihey are caused bgingle alleles. Related
Class ClaslHerrorsand Lecturer DoublBooked Errors, by contrast, ataused by the
destructive interaction of two or more alleles.

Another reasorwhich must be considered fovhy Room Too Small Errors and
Lecturer UnavailableErrors took along time to be eradicated is that this result is
specific tothe constraint data. Thrandom allocation of class sizéw the constraint
data, forexample, allowed unrealistic class size distributions tocteated. Any
possiblefuture versions of thiprojectmight be able tause constraint data froneal
institutions, inorder toavoidanysuch problemd-or simplified problems, such as this,
constraint data could be modelled on smaller institutions such as high schemigleor
faculties of a university.

37

Performance of “gaatt.c” in Test 5

The combination ofll four types of hard constraimtrror displayed an antgestalt
property, in that thenumber of generations to solv®r all four constraints
simultaneouslywas greater than tsolve forthe sum of eackconstraintindividually.

This is not an unexpected result. The interaction between the four tgp@mheans

that there are less directions in the cost landscape in which the population can evolve.

FIGURE 25resembles a scaled version BIGURE 27. Thetwo were similar in
appearance for the sote reason that Roormoo Small Errorshad a weighting 0100,
and dominated the averagest. The extended flat region RIGURE 25 shows that
even once Roorfoo Small Erors were removed, “gaatt.e¢dok manygenerations to
reach acost of zeroThis might betaken as aimdication hat RoomToo Smallerrors
were given too high a weighting inTest 5-they werenot ashard to remove as the
weightings would suggest.

The weightings usetbr the four types of hard constrainttest 5 were not tuned to
provide optimal performance. From inspection of FIGURES 26 and 28 it afghatrs
Related Class Clash Bmns and Lecturer Double @ked Errors were noweighted
highly enough. However, it is hard to know what téects of such changes to
constraint weightings would be, unless further tests are performed.

In order tofind optimal weightingghroughempirical techniques a very large number

of tests would need to be performed. A crggrede could be to use the average
number of generationken for each type ofiolation to be removed, as shown in
Table 2. In this schentbe four types oérrorwould have weightings @&5.1, 1270.6,

59.8 and 293.Irespectively. This method isrude because ifails to take into
consideration interactions between th#erent constraints. Alternativelynanytests
could be performed with different combinations of weightings in order to see which are
best. A more advanced method would be to use the results of sestht@decide on
which combinationsare promising and thenry othervalues in this region. Such a
technique would be bordering on a metalevel optimisation strategy.

If sufficient informationabout theeffects of hard constraint weightings was known
then a weightings fine tuner could be incorporated into thelW®#Anately, for optimal
evolution, it could dynamically alter the weightings even as the algorithm was running.
For example, ifthe number ofoccurrences of a particular type has become stagnant
within the population then itsveighting could be increased amtte versa.Tuning

such as this might avoid the behaviour exhibited in FIGURE 26 and FIGURE 28 where

38

the populatiormanaged to escape from regions where Related Clask Errors and
Lecturer DoubleBooked Errorsrespectively, had been eradicatéthis would be a
highly sophisticated metalevel optimisation technique. As such, its implementation is
well beyond the scope of this paper.

Performance of “gaatt.c” in Test 6.

The optimal mutatiomate wasfound to beat, ornear, 16.This supports thesarlier
statement that mutation ratesist bekept low (Davis, 1991) inorder tomaintain a
balance between exploitation and exploration (Gen and Cheng, N9fAtion rate
values larger than this emallerthan this provided slower evolution, in asymmetric
pattern.

With the mutationrate set to zero the cost of tpepulation stagnatedlhis was

almostdefinitely because, without mutation, no nableleswere introduced into the
population. Forhigh mutation rates the evolutiodid not stagnate, rather it
progressed only very slowly. This could d&ttributed to thdrigh mutationrate causing
too much exploration ofthe (largely unpromising) search space andt enough

exploitation of the genes found within the current population at any time.

It is important to note that the Mutation Rate Tesly looked at the averageost
after thefirst 500 generations. As such, anly gavedirect informationabout the
optimal mutationrate in theearly stages of evolution. It is not, therefore known if
some mutatiomate otherthan 16 would provide faster evolution tacast of 0. To
record thetime taken to evolve rightlown to a cost of O for &hole range of
mutation rates would have takemanytimes longer taest, so the current test was
considered adequate.

Ultimately, it is quite possiblethat optimal performance othe GA would require
continual fine tuning of the mutation rate. The implementation of metalevel
optimisations techniques such as this, go well beyond the aims of this thesis.

Performance of “gaatt.c” in Test 7.

The smallest possiblpopulation sizgthree) wasseen to evolve quickest afl sizes
tested in test seven. It is assumed that this is because “gaatt.c” was execwgedabn a
machine. Assuch, larger populations take mdmme in between each selection for
extinction- so lower performance chromosomesgaren more of a chance to breed.

39

On a parallel machine larger populations could be expected to perform better. It cannot
be ruled out that even on the current hardwatdf@rent tuning othe GA parameters
could allow larger populations to perform better than minimally small ones.

Possible Improvements to “gaatt.c”

Incorporating Soft Constraints into “gaatt.c”

As mentioned in the method section, soft constraints could be incorporatedamtbe
way as hardconstraints, thougiprobably with smaller weightingddowever, fast
optimisation might requiréghat some soft constraints lggven large weightings, so as
to ensure thagelection pressure in their directiorsidficiently strong. Insuch a case,
the difference between hard and soft constraints couldsdiely stored in the
termination criteria. The GA couldot terminate untilall hard constraint errors were
removed, though some soft constraint violations waelchain. In anycase, the
architecture of “gaatt.c” is readily applicable to the inclusion of soft constraints.

Improving the existing Repair Strategy

Each time a timetable eated it must be repaired. As such, it is important that the
repair strategy perform its task efficiently aspossible. The repair strategy requires
two stages. Irthis implementation, thegre separated so that the routine mat find

an impasse if, when trying &locate an unbooked class, there are no NULL bookings
available. Asmarter systenmight be able to perfornthe two steps of the repair
strategy togetheiThis couldrepresent aignificant improvement ithe time taken to
create eaclimetable. However, it wouldot reduce th@umber of timetablews/hich

are evaluated before a solution is found.

The Possible Incorporation of Further Repair Strategies on “gaatt.c”

As outlined in the theory section, the performance of a GApsoved as more repair
strategies arencluded init. In particular, it might be beneficial tocreate repair

strategieswvhich eitherminimise oreradicate instances ahy particular type of hard

constraint violation.This could drasticallyeduce thesize ofthe solution space, and
provide faster evolution.

40

Minimisation, or even removal &@oomToo Small Erors appears to bewable goal
for a further repair strategy to deal wiffhis istrue fortwo reasons. Firstly, because
of all hard constraints violations considered in Tests 1 to 4 RboonSmall Errors
took the largeshumber of generations to eradicate. Secondly, be@ustiing theory
of similar sorting problemsnight be readily applicable to theieduction. Asystem
could be developedhich sorts through éimetable ensuring thal classedooked to
rooms too small for them are foundsuitable accommodation elsewhere. léss
intelligent, though highly robust method couldaboriously avoidthe assigning of
classes taooms which are too small in the first place.Any repair strategywhich
minimisesRoom Too Small Erors would have th@otential to greatly increase the
speed of evolution.

Similarly, repair strategies could be found minimise vioktions of any of the
remaining types of hard constraints. Pre-existing theory relevanarty of these
constraints, no matter how far removed from GAs, could be used &sdiséor a

repair strategy. The incorporation of further techniques for repair would dpreater
importance if the magnitude of the problem was increased.

Initialisation of Timetables from Secondary Storage.

A further extension to “gaatt.c” would be faclude the ability to initialise the
population from a secondary sourd@&is might be particularly useful, if it is intended

that a timetable be kept as similar as possible from year to year. By choosing last year’s
timetable as a basi®er this year’'s, such a goahight be achievedHowever, that

would not be thebestway to perform such task as the breadth of the search would

be considerablyeduced, and unbounded deviation froine startpoint could still

occur. A more correct method kéeping timetablesimilar fromyear to year would

be to baseart of theevaluation of a proposed timetable loow similar it is to the
timetable ofthe previous year. In such a case the population tilllde initialised

from a random point, thus ensuring a suitably broad search.

Consideration of Alternative Data Structures for Timetables.

A timetable can be representedaimy of a number ofvays. Each representation has
advantages and disadvantages in terms of the performance of the GA. In particular,
different timetable implementations will vary mw much space (ie. memorythey
occupy and howeasy theyare to evaluate. Consequentlyey will vary in how
complex they are to deal with and ultimately, how quickly they converge.

41

The advantage of th&tyle chosen ishiat it automatically eradicatethe chance of a
classroom being doubleooked, thugemovingone type of hard constraimtolation.
Otherimplementations would allow this type of hardnstraint to be breached, but
would remove thepossibility of other hard constrainviolations. For example,
consider a timetable as an array of classes, where each claterbdsvith it a room
number and a time. In thsase, eaclelass vill automaticallyappearonly once, but
rooms could be double booked.

The disadvantage of tha#ata structure chosen fametables ighat, because of the
space wasted in NULL bookingall timetablesare as large as can be. However, in a
resource tightimetable, therare less NULL bookingsSince“gaatt.c” was created
specifically todeal withresource tight situations, the disadvantage of wasted space is
not of tremendous importance.

Extending “gaatt.c” to the Complete Lecture Timetabling Problem.

In order to modify “gaatt.c” to handlethe completetimetabling problem, further
constraints must be incorporatedthin it. Generally this means that extensions must
be made tahe constraint dateExtensions to each type of constragdta will be
discussed in turn.

A more advanced moddbr storing Lecturerinformation would contain a more
detailedavailability timetable whichshows also preferred timésr lecturing, preferred
daysfor notlecturing and s@n. Thelocation of the lecturer'sffice or homeroom

needs to batored as @rid location (Cartesian coordinates), that theapproximate
distance a lecturer needs to travel can be calculated. Furthermore, a lecturer’s
preferred rooms or roomequirements might bstored (forexample, wheelchair
access might be required).

In a complete timetabling problem Classesuld have mordields. Theremight be a
field indicatingthe preferred location for a class. In the curssstem, each class can
have onlyone lecturerthis could be expandable. The homem ofeach class would
need to be stored asgad location sathat theproximity of each class tthe home
department could be assessed. Also, as mentioned previously, an exgsigea
would allow each class to belong to more than one set of related classes.

42

More information could bestored about eacilassroom. Aravailability timetable of
the room would be storedo take care of prior bookings, separaleaningrosters
etc) and a list of equipment which eoom has (air conditioning, audioisual,
laboratory equipmergtc), which may baequired/requested. The grid locationeaich
classroom would need to be stored so that distances could be assessed.

The extension of the constraitiita wouldmeanthat moretypes of constraint could
be placed on themetables. This could bexpected to increashe time taken tofind
viable solutions. It would be reasonable to assume,ef@mple, that doubling the
number of constraints othe timetable would more than doubilee amount otime
taken to reach a satisfactory result. However, the restitaetable would be more
applicable to redlife situations. The addition of soft constraints, éxample, would
meanthat rather thaconvergingioward adequatgmetablesthe GA would converge
towardexcellent timetables. Thitexibility of the methodwhereby further constraints
can be added withouimit, meansthat almostany problem which a timetable might
produce can be catered for.

In practice a Genetic AlgorithrAutomated Timetabling systenmwould require an
ergonomic front end, mogtrobably of a graphical form. This would beed to enter
and manipulate constraigiata,and to extracproposedtimetables. Theoperator of
such a program couldltimately be aperson withlittle or no knowledge of the
underlying GA.

A Brief Discussion of Genetic Algorithms

The incorporation ofintelligent methods-whether theyare Lamarckian, Memetic,
Repair strategies, any other, intoGenetic Algorithms can providgestalt effects.
The depth of one can be added to the breadth ofttiex,as the casmay be. This
ensureghat awell constructed GA can always perform at least almostedisas any
techniques which might rivat. This istrue for the simple reason that a GA can
incorporate its rivals within it, thus creating a hybridised GA.

Furthermore,unlike many ofthe techniqueshat humans havereated for solving
problems, GAsare readily applicable to highly parall@rchitectures. It is irhis

direction that GA are widely expected to excel.

Since their conception in 1975 GAs have undergongremt many changes. In
particular theyare no longer solosely comparable to biologicaVolution. The use of

43

more complexdata typesneansthat in many cases thé'genes” ofthe GA hardly
resemble biological genes at aBimilarly, methods of mutation are no longer so
closely paralleled witlihose in nature. Rathesiny mutation methodsvhich perform
well on the given problemare used, regardless ofaek of biological couterpart. In
ways such as this GA no longer imitéhe specificmethods of evolution observable in
nature, rather, they encapsulate its essence.

44

Chapter 6: Conclusions.

It has been seen th&jaatt.c” performed directed evolution onsenplified Lecture
Timetabling problem, angroducedtimetables void of hard constraint violations.
These results were very promising.

The major improvementhat could bemade to its performance ahe Simplified
Lecture Timetabling Problemwould be the furtheinclusion of RepairStrategies.
Also, the fine tuning of its performance parameters could provide faster evolution.

The program was seen to beadily scalable tdhe Complete Lectur@imetabling
Problem. This would be achieved by increasihg size of the University and by
incorporating further constraints on the timetable.

GAs effectively demonstrated ambility to solve complex optimisation problems.

Notably, this served to provide a vetiiorough introduction to theechniques
employed and incorporated by Genetic Algorithms.

45

Appendix A: Reference List.

Anderson A and Simpson ARL996): Genetic Algorithm Optimisation Software in
FORTRAN Research Report No. R1E#&epartment ofCivil and Environmental
Engineering, The University of Adelaide.

Buckles BP and Petry FEL992): Genetic AlgorithmsLos Alamitos : ThelEEE
Computer Society Press.

Burke EK, Newall JP and WearBF(1995) : A MemeticAlgorithm for University
Exam Timetabling. IBurke E and Ross P (Eds):ecture Notes in Computer
Science 1153 Practice and Theory of Automated Timetabling First
International Conference, Edinburgh, U.K., August/September 1995, Selected
Papers. New York: Springer-Verlag Berlin Heidelberg. pp 241-250.

Burke E and Ross P (Eds) (199&)ecture Notes in Computer Science 1153 Practice
and Theory of Automated Timetabling First International Conference,
Edinburgh, U.K., August/September 1995, Selected PaperSlew York:
Springer-Verlag Berlin Heidelberg

Carter MW and_aporte G (1995): Recemevelopments in Practical Timetabling. In
Burke E and Ross P (Eds).ecture Notes in Computer Science 1153 Practice
and Theory of Automated Timetabling First International Conference,
Edinburgh, U.K., August/September 1995, Selected Papdiew York:
Springer-Verlag Berlin Heidelberg. pp 3-21.

Cooper TBand Kingston JH(1995): TheComplexity of TimetableConstruction
Problems. In Burke E and Ross P (Ed&ecture Notes in Computer Science
1153 Practice and Theory of Automated Timetabling First International
Conference, Edinburgh, U.K., August/September 1995, Selected Payens.
York: Springer-Verlag Berlin Heidelberg. pp 283-295.

Corne D and Ross P (1995peckish InitialisationStrategies for Evolutionary
Timetabling. InBurke E and Ross P (Edslkecture Notes in Computer Science
1153 Practice and Theory of Automated Timetabling First International
Conference, Edinburgh, U.K., August/September 1995, Selected Payens.
York: Springer-Verlag Berlin Heidelberg. pp 227-240.

46

Davis L (Ed) (1991):Handbook of Genetic Algorithmslew York: Van Nostrand
Reinhold.

de Werra D (1995): Som@ombinatorial Modelgor CourseScheduling. In Burke E
and Ross P (Eds):Lecture Notes in Computer Science 1153 Practice and
Theory of Automated Timetabling First International Conference, Edinburgh,
U.K., August/September 1995, Selected Papétsw York: Springer-Verlag
Berlin Heidelberg. pp 296-308.

Erben W and Keppler §1995): A GeneticAlgorithm Solving a WeeklyCourse-
Timetabling Problem. IiBurke E and Ross P (Edslecture Notes in Computer
Science 1153 Practice and Theory of Automated Timetabling First
International Conference, Edinburgh, U.K., August/September 1995, Selected
Papers. New York: Springer-Verlag Berlin Heidelberg. pp 198-211.

Ergul A (1995): GA-basedExamination Scheduling Experience at Middast
Technical University. IrBurke E and Ross P (Edslecture Notes in Computer
Science 1153 Practice and Theory of Automated Timetabling First
International Conference, Edinburgh, U.K., August/September 1995, Selected
Papers. New York: Springer-Verlag Berlin Heidelberg. pp 212-226.

Gell-Mann M (1994: The Quark and the Jaguar - adventures in the simple and the
complexLondon: Little, Brown and Company Limited.

Gen M and Cheng R (199Genetic Algorithms and Engineering Desifew York:
John Wiley & Sons, Inc.

Goldberg DE (1989)Sizing Populations for Sl and Parallel Genetic Algorithms. In
Buckles BP and Petry FE994): Genetic AlgorithmsLos Alamitos: ThelEEE
Computer Society Press. pp 20-29.

Grefenstette J (1986Dptimisation ofControl Parameters for Gene#dgorithms. In
Buckles BP and Petry FE994): Genetic Algorithmslos Alamitos : ThelEEE
Computer Society Press. pp 5-11.

Heitkoetter J (1993FAQ for comp.ai.genetic Usena¢wsgroup Available from The
Sante Fe Institute on the WWW at “http://alife.santafe.edu/~joke/encore/www/”

a7

Hoener H (1996):Genetic Programming KernelAvailable on the WWW at
“http://aif.wu-wien.ac.at/~geyers/archive/gpk/Dok/kurz/kurz.html”

NovaGenetica (1997):Nova Genetica- Your #1 sourceor information on
evolutionary algorithms Available on the WWW at
“http://www.aracnet.com/~wwir/NovaGenetica”

Opcom (1996)TIARA Timetabling and Room Allocati@oftware System FACT
SHEET.Toowong: Opcom.

Paechter B,Cumming A, Noman MG and Luchian H1995): Extensions to a
Memetic Timetabling System. IBurke E and Ross P (Eds):ecture Notes in
Computer Science 1153 Practice and Theory of Automated Timetabling First
International Conference, Edinburgh, U.K., August/September 1995, Selected
Papers. New York: Springer-Verlag Berlin Heidelberg. pp 251-265.

Rankin RC(1995): AutomaticTimetabling inPractice. In Burke E and Ross P (Eds):
Lecture Notes in Computer Science 1153 Practice and Theory of Automated
Timetabling First International Conference, Edinburgh, U.K,
August/September 1995, Selected Papdédew York: Springer-VerlagBerlin
Heidelberg. pp 266-279.

Ravise C,Serbag M and Schoenauer M (1995): Induction-based Conti@enétic
Algorithms. In Alliot J-M, Lutton E,Ronald E, Schoenauer M and Snyers D
(Eds): Lecture Notes in Computer Science 1063 Artificial Evolution European
Conference, AE 95 Brest, France, September 1995, Selected Rdper¥.ork:
Springer-Verlag Berlin Heidelberg. pp 100-119.

Rich DC(1995): A Smart Genetidlgorithm for University Timetabling. IrBurke E
and Ross P (Eds):Lecture Notes in Computer Science 1153 Practice and
Theory of Automated Timetabling First International Conference, Edinburgh,
U.K., August/September 1995, Selected Papétsw York: Springer-Verlag
Berlin Heidelberg. pp 181-197.

Shaffer R(1996): Practical Guide to Genetic Algorithmgvailable onthe WWW at
“http://chem1.nrl/navy.mil/~shaffer/chemoweb.html”

48

Sherwood L (1993)Human Physiology: from Cells to Syste(@ad ed) USA: West
Publishing Company.

Syswerda G (1991)Schedule Optimisation Using Genetic Algorithms. In Davis L
(Ed): Handbook of Genetic Algorithmblew York: Van NostrandReinhold. pp
332-349.

University of Queensland1997): The University of Queensland General Class

Timetable St Lucia Campus 199%t Lucia: TheAcademic Registrar, The
University of Queensland.

49

Appendix B: C code for “gaatt.c”

/*

* FILE: gaatt.c

*

*

* TOPIC: Genetic Algorithm solution to lecture timetabling
* problems.

*

*METHOD: Maintains a population of timetables. Timetables

* are bred, and evluated. Evaluation uses constraint

* data loaded from a file.

*

* CAVEAT: The need for an excessive amount of nested statements
* makes this code particularly difficult to read.

* Pseudo code provided in the method section of the thesis
* "LECTURE TIMETABLING USING GENETIC ALGORITHMS"
* should help clarify the code.

*

*WRITTEN BY: LEON BAMBIRICK, Jan 1997 - Oct 1997.

*

* STUDENT NO: 328 828 944,

*

*

#include <stdio.h>
#include <dos.h>

#include <conio.h>
#include<math.h>

#include <stdlib.h>
#include <alloc.h>

#define max_population_size 3

#define max_num_of lecturers 52

#define max_num_of classes 202

#define max_room_num 15

#define days_in_week 5

#define hours_in_day 10

#define class_num int

const cost_of related class_clash = 1;
const cost_of room_too_small = 100;
const cost_of lecturer_double_booked = 1;
const cost_of unavailable_lecturer = 20;
/*

* Type declarations.

*

typedef long cost_type;

typedef int coordinate_type;

typedef coordinate_type room_location_type[2];
typedef char class_name_type[6];

typedef int associated_class_code_type;

typedef char lecturer_name_type[30];

typedef int lecturer_code_type;

typedef int reference_num_of_lecturer_type;

typedef int class_size_type;

typedef int availability_time_table [days_in_week] [hours_in_day];

typedef struct lecturer {
lecturer_name_type name_of_lecturer;
lecturer_code_type code_of_lecturer;
room_location_type home_office_location_of_lecturer;
availability _time_table availability_time_table_of_lecturer;

|3

struct collection_of _lecturers {
struct lecturer lecturers [max_num_of_lecturers];
int num_of _lecturers;

} lecturer_constraints;

typedef struct class{
class_name_type name_of_class;
reference_num_of lecturer_type reference_num_of lecturer;
class_size type size_of class;
associated_class_code_type associated_class_code;
room_location_type home_office_location_of class;

k

struct collection_of classes {
struct class classes [max_num_of classes];
int num_of classes;
int num_of class_associations;

} class_constraints;

typedef char room_name_type[10];
typedef int room_capacity_type;
typedef struct room{

room_name_type name_of_room ;
room_capacity_type capacity _of room;
room_location_type location_of _room;

availability_time_table availability_time_table_of room;

k

struct collection_of_rooms {
struct room rooms [max_room_num];
int num_of_rooms;

} room_constraints;

typedef struct time_table {
struct time_table *next;
class_num huge bookings [max_room_num] [days_in_week] [hours_in_day];

cost_type cost;

cost_type rcc_error_count;
cost_type rts_error_count;
cost_type Idb_error_count;
cost_type lua_error_count;

3

typedef int population_size_type;
typedef char colony_name_type[80];
struct colony {

51

colony_name_type name_of_colony;
struct time_table *first_time_table;
struct time_table *last_time_table;
population_size_type population_size;
cost_type average_cost;
cost_type rcc_error_count;
cost_type rts_error_count;
cost_type Idb_error_count;
cost_type lua_error_count;

} solution_colony;

typedef char file_name_type[12];

/*

* Prototypes

*

int main(void);

int initialise_constraints(file_name_type constraint_file_name);
int repair_strategy(struct time_table *curr_ptr);
int repair_strategy_O(struct time_table *curr_ptr);
int calculate_cost(struct time_table *curr_ptr);

int initialise_colony(void);

int kill_costly _colony_members(void);

int breed_colony(void);

int output_colony(file_name_type out_file_name);
int mutate(struct time_table *curr_ptr);

int pop_size(void);

int population_size;

long related_classes(struct time_table *curr_ptr);
long room_too_small(struct time_table * curr_ptr);
long lecturer_unavailable(struct time_table * curr_ptr);
int fget_string(FILE *in, char wordy[80]);

int value_of(char wordy[80]);

int fget_line_value(FILE *in);

int fgetc_value(FILE *in);

void fputn(int number, FILE *fp);

/*

* Global variables

*/

int mutation_rate = 16;
int num_of _trials = 0;

~
*

main -

evolves timetables in the direction of minimum number of breaches
of all constraints included.

Terminates when one perfect timetable has been created.

E I B I 3

*
int main(void)
{
int generations = 0;
int num_of_generation = 0;
cost_type maximum_allowed_cost = 0;

52

char constraint_file_name[] = "c:\\tcc\\thesis\\constr3.ctr";
char out_file_name][] = "c:\\tcc\\thesis\\out.pop";

if (initialise_constraints(constraint_file_name)!=0)
exit(1);

randomize();

population_size = max_population_size;

if (initialise_colony()!=0)
exit(1);

if (find_average_cost()!=0)
exit(1);

/*

* repeat until a perfect time table is found.

*/

while (solution_colony.first_time_table -> cost
> maximum_allowed_cost) {

/*
* kill off the costliest half of the population
*/

if (kill_costly _colony_members()!=0)
exit(1);

/*
* find the average cost of the population.
*
if (find_average_cost()!=0)
exit(1);

/*
* breed the population back up to full size.
*
while (solution_colony.population_size <
max_population_size){
num_of trials= num_of _trials +1;
if (breed_colony()!=0)
exit(1);
}
num_of_generation++;
/*
* Output the current status to the screen.
*
printf(" %d ",(solution_colony.average_cost));
printf(" %d ",num_of _trials);
printf(" %d ",num_of_generation);
printf(" (%d) \n",
solution_colony.first_time_table -> cost);
num_of_trials = 0;

}

/*
* output the colony to a ".pop" text file
*
if (output_colony(out_file_name) !=0)
exit(1);
printf("\nfinished after %d generations.\n",generations);

53

return(0);

}

/*
* fget_string-

*

* used for getting a string from a file

*

*/

int fget_string(FILE *in, char wordy[80])

int prevcha = 'a’;
int count = 0;

while ((prevcha !="\n") && (!feof(in))) {
prevcha = fgetc(in);
if (prevcha !'="\n") {
wordy[count]=prevcha;

count++;
}
}
wordy[count] = NULL;
return O;
}
/*
* value_of-

*

* returns the integer values of a string.
*
int value_of(char wordy[80])

{

int a;

int count = 0;
int val = 0;
int row = 0;

while(wordy[count] = NULL) count++;

for (a=0; a<count; a++){
val += (wordy[count-a-1]-'0") *pow(10, row);
row++;

}

return val;

}

int fget_line_value(FILE *in)

{
char wordy[80];

fget_string(in, wordy);
return value_of(wordy);

}

int fgetc_value(FILE *in)
{

char ch;

54

ch = fgetc(in);
return (ch - '0";

}

/*
* initialise_constraints-
*

*

* PRE: the file references by file_name_type contains valid constraint
* data
*
* POST: All class constraints, lecturer constraints and room
* constraints are loaded from the file.
*
*/
int initialise_constraints(file_name_type constraint_file_name)
{
FILE *in;
char wordy[80];
char prevcha;
inta=0;
int day, hour;

if ((in = fopen(constraint_file_name, "rt")) == NULL)

fprintf(stderr, "Cannot open input file.\n");
return 1;
}
fget_string(in,wordy);
fget_string(in,wordy);
class_constraints.num_of classes = fget_line_value(in);
class_constraints.num_of class_associations = fget_line_value(in);
/*
* read all data about class constraints from the file.
*
for (a = 1; a <= ((class_constraints.num_of classes)); a++) {
fget_string(in,class_constraints.classes[a].name_of class);
class_constraints.classes[a].reference_num_of_lecturer
= fget_line_value(in);
class_constraints.classes[a].size_of class
= fget_line_value(in);
class_constraints.classes[a].hnome_office_location_of class[1]
= fget_line_value(in);
class_constraints.classes[a].nome_office_location_of class[2]
= fget_line_value(in);
class_constraints.classes[a].associated class_code
= fget_line_value(in);
}
class_constraints.classes[0].reference_num_of_lecturer = 0O;
class_constraints.classes[0].size_of_class = 0;
class_constraints.classes[0].associated_class_code = 0;
lecturer_constraints.num_of_lecturers = fget_line_value(in);
for (a = 0; a < lecturer_constraints.num_of_lecturers; a++) {
fget_string(in,lecturer_constraints.
lecturers[a].name_of _lecturer);

lecturer_constraints.lecturers[a].

55

home_office_location_of lecturer[1]
= fget_line_value(in);

lecturer_constraints.lecturers[a].
home_office_location_of_lecturer[2]
= fget_line_value(in);

for (day = 0; day < days_in_week; day++) {
for (hour=0; hour<hours_in_day; hour++) {

lecturer_constraints.lecturers[a].
availability_time_table_of _lecturer
[day][hour]
= fgetc_value(in);
}
fget_string(in,wordy);

}
}
room_constraints.num_of_rooms = fget_line_value(in);
for (a = 0; a<room_constraints.num_of_rooms; a++) {
fget_string(in, room_constraints.rooms[a].name_of_room);
room_constraints.rooms|a].capacity _of room =
fget_line_value(in);
room_constraints.roomsfa].location_of room[1] =
fget_line_value(in);
room_constraints.roomsfa].location_of room|[2] =
fget_line_value(in);
for (day = 0; day < days_in_week; day++) {
for (hour = 0; hour<hours_in_day; hour++) {
room_constraints.rooms[a].
availability time_table of room[day][hour]
= fgetc_value(in);

}
fget_string(in,wody);
}
}
fclose(in);
return(0);
}
/*

* repair_strategy-

*

* Performs the second stage of repair to the timetable pointed to
* by curr_ptr

*

* PRE: Each class is booked zero or more times
*

* POST: Each class is booked either zero times or one time.
*

*/

int repair_strategy(struct time_table *curr_ptr)

{
/*

PRE: Each class can appear 0 times, 1 time or 2 times in a timetable
POSSIBLE PRE: Maybe a class can appear more than twice- two reasons:

may want to have more than two parents. May help in making
this a simple "random population" high cost time table generator.

POST: It must be true that for each class there is one and only one
booking for it in a week.

Any class which is not booked exactly once must be corrected.

A suggested style for doing this is as follows:

*

struct booking_location {

int which_room;

int which_day;

int which_hour;

struct booking_location *next;

struct booking_location *first;

struct booking_location *curr_booking;
struct booking_location *booking_to_remove;
int cur_class;

int class_occurred;

int cur_room;

int day;

int hour;

int one_to_remove;

char chr;

inta =0;

for (cur_class=1; cur_class<max_num_of classes; cur_class++) {
class_occurred = 0;
for (cur_room = 0; cur_room<max_room_num;cur_room-++)
for (day = 0; day<days_in_week; day++)
for (hour = 0; hour<hours_in_day; hour++){
if (curr_ptr -> bookings
[cur_room][day][hour] ==
cur_class) {
class_occurred++;

if (class_occurred == 1) {

else {

if (((first) =
(struct booking_location *)malloc(sizeof(struct booking_location)))
== NULL) {
printf("\n insufficient memory for this booking\n");
exit(1);
}

curr_booking = first;

if (((curr_booking->next) =
(struct booking_location *)malloc(sizeof(struct booking_location)))
== NULL) {
printf("\n insufficient memory for booking allocation \n");
exit(1);

57

curr_booking = curr_booking -> next;
}
curr_booking -> which_room = cur_room;
curr_booking -> which_day = day;
curr_booking -> which_hour = hour;

}
}
if (class_occurred == 1) {
free(first);

} else
if (class_occurred > 1) {
while (class_occurred > 1) {
curr_booking = first;
one_to_remove = random(class_occurred);
for (a=0;a<one_to _remove;a++) {
curr_booking = curr_booking -> next;
}
cur_room = curr_booking -> which_room;
day = curr_booking -> which_day;
hour = curr_booking -> which_hour;
if (curr_ptr -> bookings [cur_room] [day] [hour]
== cur_class) {
curr_ptr -> bookings [cur_room] [day] [hour] = 0;
if (one_to_remove == 0) {
booking_to_remove = first;
first = first -> next;
}
else
if (one_to_remove != class_occurred)
{
curr_booking = first;
for (a=0; a<(one_to_remove-1); a++){
curr_booking = curr_booking -> next;
}
booking_to_remove = curr_booking -> next;
curr_booking -> next = (curr_booking -> next)-> next;
}
free(booking_to_remove);
class_occurred --;
}
free(first);
}
}
}
return(0);
}
/*

* repair_strategy 0O-

*

* Performs the second stage of repair to the timetable pointed to
* by curr_ptr
*

* PRE: Each class is booked either zero times or one time
*

* POST: Each class is booked precisely once.

*
*
int repair_strategy_O(struct time_table *curr_ptr)
{
int cur_class;
int class_occurred;
int cur_room;
int day;
int hour;
int one_to_remove;
char chr;

for (cur_class=1; cur_class<class_constraints.num_of_classes; cur_class++) {

class_occurred = 0;
for (cur_room = 0; cur_room<max_room_num;cur_room-++)
for (day = 0; day<days_in_week; day++)
for (hour = 0; hour<hours_in_day; hour++) {
if (curr_ptr ->
bookings [cur_room][day][hour]
== cur_class) {
class_occurred++;
}
}
if (class_occurred == 0) {
while (class_occurred == 0) {
cur_room = random(max_room_num);
day =random(days_in_week);
hour = random(hours_in_day);

if (curr_ptr ->
bookings [cur_room] [day] [hour] == 0) {

curr_ptr ->
bookings [cur_room] [day] [hour]
= cur_class;
class_occurred ++;
}
}
}
}
return(0);
}
/*

* related classes-
*
* counts the number of times that related classes are booked
* at the same time in the timetable pointed to by curr_ptr
*
*
long related_classes(struct time_table *curr_ptr)
{
int num_of_occurrences=0;
int curr_class_group = 0;
int this_group_has_occurred = 0;
int curr_room;
int curr_day;

59

int hour,;
int this_class_group;
int this_class_num;

for (curr_class_group = 1;
curr_class_group <=
class_constraints.num_of class_associations;
curr_class_group ++) {

for (curr_day=0; curr_day < days_in_week; curr_day++) {
for (hour=0; hour< hours_in_day; hour++) {
this_group_has_occurred = 0;
for (curr_room = 0;
curr_room < max_room_num;
curr_room ++) {

this_class_num =

(curr_ptr ->

bookings
[curr_room][curr_day][hour]);

if (this_class_num!=0) {

this_class_group =
class_constraints.
classes
[this_class_num].
associated_class_code;
if

(this_class_group

== curr_class_group) {

this_group_has_occurred ++;

}
}
if (this_group_has_occurred>1) {

num_of_occurrences +=
(this_group_has_occurred-1);

}
}

return num_of_occurrences;

}

/*

* room_too_small-

*

* counts the number of times a class is booked to a room which is

* too small for it in the timetable pointed to by curr_ptr
*

*
long room_too_small(struct time_table *curr_ptr)

{

int num_of_occurrences=0;

60

int curr_room;

class_size_type curr_size_available;
class_size_type curr_size_allocated;
int curr_day;

class_num curr_class;

int hour;

for (curr_room=0;
curr_room < room_constraints.num_of_rooms; curr_room ++){

curr_size_available =
room_constraints.rooms[curr_room].capacity_of_room;

for (curr_day=0; curr_day < days_in_week; curr_day++)
for (hour=0; hour< hours_in_day; hour++){

curr_class = curr_ptr ->
bookings [curr_room][curr_day][hour];

if (curr_class !=0) {
curr_size_allocated =
class_constraints.
classes[curr_class].
size_of class;

if (curr_size_available
< curr_size_allocated) {
num_of_occurrences ++;

}

return num_of_occurrences;

/*

* lecturer_double_booked-

*

* counts the number of times a lecturer is double booked in the
* timetable pointed to by curr_ptr

*

*/

long lecturer_double_booked(struct time_table *curr_ptr)

{

int num_of _occurrences=0;
int curr_room;

int lecturer_num;

int curr_lecturer;

int num_of _bookings_at_this_time;
int current_lecturer_is;
struct class current_class_is;
int curr_class;

int curr_class_num;

int curr_day;

int hour;

61

for (lecturer_num = 0; lecturer_num < lecturer_constraints.
num_of_lecturers; lecturer_num-++) {
for (curr_day = 0; curr_day < days_in_week; curr_day++)
for (hour = 0; hour< hours_in_day; hour++){
num_of_bookings_at_this_time = 0;
for (curr_room = 0;
curr_room < max_room_num;
curr_room ++){

curr_class_num =
(curr_ptr ->
bookings
[curr_room][curr_day][hour]);
if (curr_class_num!=0){
curr_lecturer =
class_constraints.
classes[curr_class_num].
reference_num_of_lecturer;

if (curr_class_num !=0) {
if (lecturer_num ==
curr_lecturer) {

num_of bookings_at_this_time++;

}
}

if (num_of bookings_at_this_time>1) {

num_of_occurrences
+=(num_of bookings_at_this_time-1);

}

}
}

return num_of_occurrences;

}

/*
* lecturer_unavailable -
*
* returns the number of violations of the constraint
* "Lecturer's cannot be booked when they have prior commitments."
* in the timetable pointed to by curr_ptr.
*
*
long lecturer_unavailable(struct time_table *curr_ptr)
{
int num_of_occurrences=0;
int curr_room;
int lecturer_num;
int curr_lecturer;
int current_lecturer_is;
struct class current_class_is;

int curr_class;

int curr_class_num,;
int curr_day;

int hour;

for (curr_day=0; curr_day < days_in_week; curr_day++)
for (hour=0; hour< hours_in_day; hour++){
for (curr_room=0; curr_room
< max_room_num; curr_room ++){

curr_class_num
= (curr_ptr -> bookings
[curr_room][curr_day][hour]);

if (curr_class_num !=0) {
curr_lecturer =
class_constraints.
classes[curr_class_num].
reference_num_of_lecturer;

if (lecturer_constraints.
lecturers[curr_lecturer].

availability time_table_of lecturer

[curr_day][hour] == 0) {
num_of_occurrences++;

}

}
}

return num_of_occurrences;

}

/*
* calculate_cost-
*
* calculate_cost determines the cost of the timetable pointed to
* by curr_ptr. The number of violations of each constraint is
* multiplied by the weighting for that constraint and added to
* the total.
*
*
int calculate_cost(struct time_table *curr_ptr)
{
cost_type the_cost = 0;
cost_type problem1;
cost_type problem2;
cost_type problem3;
cost_type problem4;
struct time_table *spare_ptr;

spare_ptr = curr_ptr;
spare_ptr -> cost = 0;
curr_ptr -> rcc_error_count = related_classes(curr_ptr);
curr_ptr -> rts_error_count = room_too_small(curr_ptr);
curr_ptr -> Idb_error_count = lecturer_double_booked(curr_ptr);
curr_ptr -> lua_error_count = lecturer_unavailable(curr_ptr);
probleml = (curr_ptr ->

rcc_error_count * cost_of_related_class_clash);

63

problem2 = (curr_ptr ->

rts_error_count * cost_of_room_too_small);
problem3 = (curr_ptr ->

Idb_error_count * cost_of_lecturer_double_booked);
problem4 = (curr_ptr ->

lua_error_count * cost_of _unavailable_lecturer);
printf(" ");
printf(" %4d", problem1);
printf(" %5d", problem2);
printf(" %5d", problem3);
printf(" %5d ", problem4);
the_cost = problem1 + problem2 + problem3 + problem4;
spare_ptr -> cost = the_cost;
return(0);

/*
* fputn -

*

* used for writing an integer from 0 to 999 into a file.

*

*
void fputn(int a, FILE *fp)
{
int b;
b=a;
if (b>99) {
b =b % 100;
b = (a-b) / 100;
fputc(b+48, fp);
b =a - (b*100);
} else
fputc(48, fp);
if (0>9) {
a=b;
b=b% 10;
b=(a-b)/10;
fputc(b+48, fp);
b=a- (b*10);
} else
fputc(48, fp);
fputc(b+48, fp);
fputc(\n', fp);
}
/*

* initialise_colony -
*

* creates a random population by repairing NULL timetables.
*
*
int initialise_colony(void)
{
struct time_table *curr_ptr;
struct time_table *lagging_ptr;

struct time_table *test_tube;
char wordy[80];

int solution, cur_room,day,hour;
int final_population_size;

solution_colony.population_size = 0;
final_population_size = population_size;
while (solution_colony.population_size < final_population_size) {
if (((test_tube) =
(struct time_table *)malloc(sizeof(struct time_table)))
== NULL) {
printf("\ninsufficient memory for TT allocation \n");
exit(1);
}
if (test_tube -> next = NULL) {
test_tube -> next = NULL;
}

if (solution_colony.last_time_table -> next = NULL) {
solution_colony.last_time_table -> next = NULL;
}

for (cur_room = 0; cur_room < max_room_num;cur_room-++)
for (day = 0; day < days_in_week; day++)
for (hour = 0; hour < hours_in_day; hour++)
(test_tube ->
bookings[cur_room][day][hour]) = O;
repair_strategy O(test_tube);
calculate_cost(test_tube);
if (solution_colony.population_size == 0) {
solution_colony.first_time_table = test_tube;
solution_colony.last_time_table = test_tube;
solution_colony.population_size++;
}else {
curr_ptr = solution_colony.first_time_table;
if (curr_ptr -> cost >=test_tube -> cost) {
test_tube -> next = curr_ptr;
solution_colony.first_time_table = test_tube;
solution_colony.population_size++;
}else {
curr_ptr = solution_colony.first_time_table;
while ((curr_ptr-> next-> cost <= test_tube -> cost)
&& (curr_ptr -> next !I= NULL)){
if (curr_ptr -> next = NULL) {
curr_ptr = curr_ptr -> next;
}

1%
if (curr_ptr ==
solution_colony.last_time_table) {
solution_colony.last_time_table
= test_tube;
test_tube -> next = NULL;
} else test tube -> next = curr_ptr -> next;
curr_ptr->next = test_tube;
solution_colony.population_size++;
}
}
solution_colony.last_time_table -> next = NULL;
curr_ptr = solution_colony.first_time_table;
while (curr_ptr = NULL) {

65

curr_ptr = curr_ptr -> next;

}
test tube = NULL;

free(test_tube);

}

return(0);

}
/*

* find_average_cost -

*

* Finds mean of the cost of each timetable
* The result is entered in the colonies average cost field.

*

*

*

int find_average_cost()

{

}

cost_type sum_of_costs = 0;
cost_type sum_of _errorl = 0;
cost_type sum_of error2 = 0;
cost_type sum_of error3 = 0;
cost_type sum_of_error4 = 0;
struct time_table *curr_ptr;
long a;

curr_ptr = solution_colony.first_time_table;
a=0;
while (curr_ptr = NULL) {
a++;
sum_of_costs += curr_ptr -> cost;
sum_of_errorl += curr_ptr -> rcc_error_count;
sum_of_error2 += curr_ptr -> rts_error_count;
sum_of_error3 += curr_ptr -> Idb_error_count;
sum_of_error4 += curr_ptr -> lua_error_count;
curr_ptr = curr_ptr-> next;
}
solution_colony.average_cost =
(sum_of costs / (solution_colony.population_size));
solution_colony.rcc_error_count =
(sum_of_errorl / (solution_colony.population_size));
solution_colony.rts_error_count =
(sum_of_error2 / (solution_colony.population_size));
solution_colony.ldb_error_count =
(sum_of_error3 / (solution_colony.population_size));
solution_colony.lua_error_count =
(sum_of_error4 / (solution_colony.population_size));
return(0);

typedef struct colony_cost_statistics {

cost_type costs[max_population_size];
cost_type average_cost;

cost_type median_cost;

cost_type fatal_cost;

66

/*

* kill_costly_colony_members -

*

* The colony is already order from least costly to most costly.
* Decide what number of people to kill (x).

* find the (pop-x)th creature. Make them the "last" in line.

* free each creature after that.

*

*
int kill_costly_colony_members()
{
int amount_to_Kkill;
float kill_ratio = 0.5; //need not be integer.
struct time_table *curr_ptr;
struct time_table *lagging_ptr;
int a;
amount_to_Kkill = (solution_colony.population_size * kill_ratio);
while (solution_colony.population_size-amount_to_kill < 2) {
amount_to_kill--;
}
curr_ptr = solution_colony.first_time_table;
for (a=0; a<(solution_colony.population_size-amount_to_kill)-1;a++){
curr_ptr = curr_ptr ->next;
}
solution_colony.last_time_table = curr_ptr;
curr_ptr = curr_ptr -> next;
solution_colony.last_time_table -> next = NULL;
do {
lagging_ptr = curr_ptr;
curr_ptr = curr_ptr -> next;
free(lagging_ptr);
solution_colony.population_size--;
} while (curr_ptr = NULL);
return(0);
}
/*
* pop_size -

*

* used for verifying that the population's size is correctly recorded.
*
int pop_size()

{
int a=0;
struct time_table *curr_ptr;
curr_ptr = solution_colony.first_time_table;
while (curr_ptr I= NULL) {
a++;
curr_ptr = curr_ptr -> next;
}
return a;
}
/*

67

* mutate -
*

* Performs mutations on a child.

* Probability that a gene will undergo mutation is (2*mutation_rate)/1000
* Method of mutation is to randomly switch any two genes.

*

*

int mutate(struct time_table *curr_ptr)

{

class_num temporary;
int cur_room;

int cur_day;

int cur_hour;

int random_room;

int random_day;

int random_hour;

for (cur_room = 0; cur_room<max_room_num;cur_room-++)
for (cur_day = O; cur_day<days_in_week; cur_day++)

return(0);

/*
* breed_colony -
*

for (cur_hour = 0;
cur_hour < hours_in_day; cur_hour++){

if (random(1000)<mutation_rate) {

temporary =
curr_ptr -> bookings
[cur_room] [cur_day]
[cur_hour];

random_room = random(max_room_num);
random_day = random(days_in_week);
random_hour = random(hours_in_day);

curr_ptr -> bookings
[cur_room][cur_day]
[cur_hour] =

curr_ptr -> bookings
[random_room][random_day]
[random_hour];

curr_ptr -> bookings
[random_room][random_day]
[random_hour]=

temporary;

* selects two members of the population, at random, to act as

* parents.

* Their genetic makeup using cross over, to produce a child

68

* The child is mutated, repaired and evaluated before being placed
*in the populatio.
*
*
int breed_colony()
{
int cross_over_rate = 2;
struct time_table *mother;
struct time_table *father;
struct time_table *test tube;
struct time_table *curr_ptr;
int mother_pos;
int father_pos;
int a;
int cur_room;
int day;
int hour;
int state=0;
printf("* %3d", num_of _trials);
mother_pos = random(solution_colony.population_size);
do {

}
while (mother_pos == father_pos);
mother = solution_colony.first_time_table;
for (a=0; a<mother_pos; a++){

mother = mother -> next;
}

father = solution_colony.first_time_table;
for (a=0; a<father_pos; a++){
father = father -> next;

father_pos = random(solution_colony.population_size);

}

if ((test_tube = (struct time_table
*)malloc(sizeof(struct time_table))) == NULL) {
printf("\n insufficient memory for TT \n");
exit(1);

state=random(2)+1;
for (day = 0; day<days_in_week; day++) {
for (hour = 0; hour<hours_in_day; hour++) {
for (cur_room = 0; cur_room<max_room_num;cur_room-++)

{
if (state==1) {

test_tube ->

bookings [cur_room] [day] [hour] =
mother ->

bookings [cur_room] [day] [hour];

if (random(cross_over_rate)==0) {
state = 2,
}
}else {
test_tube ->
bookings [cur_room] [day] [hour] =

father ->

69

}

/*

bookings [cur_room] [day] [hourT];
if (random(cross_over_rate)==0) {

state = 1,
}
}
}
}
}
mutate(test_tube);
repair_strategy(test_tube);
repair_strategy O(test_tube);
calculate_cost(test_tube);
{
printf(" ... cost= %8d\n", test_tube -> cost);
curr_ptr = solution_colony.first_time_table;
if (curr_ptr -> cost >=test_tube -> cost) {
test_tube -> next = curr_ptr;
solution_colony.first_time_table = test_tube;
solution_colony.population_size++;
}else {
curr_ptr = solution_colony.first_time_table;
while ((curr_ptr-> next-> cost <= test_tube -> cost)
&& (curr_ptr -> next = NULL) ¥
if (curr_ptr -> next = NULL) {
curr_ptr = curr_ptr -> next;
}
2
if (curr_ptr == solution_colony.last_time_table) {
solution_colony.last_time_table = test_tube;
test_tube -> next = NULL,;
}else test_tube -> next = curr_ptr -> next;
curr_ptr->next = test_tube;
solution_colony.population_size++;
}
}
return(0);

* output_colony -

*

* Qutputs all genes of all creatures to a ".pop" text file.
* They can be later retrieved and used as an initialisation point.

*

*/

int output_colony(file_name_type out_file_name)

{

FILE *out;
struct time_table *curr_ptr;
int cur_room, day, hour;

if ((out = fopen(out_file_name, "w")) == NULL) {
fprintf(stderr, "Cannot open output file.\n");
return 1;

}

curr_ptr = solution_colony.first_time_table;

while ((curr_ptr->next) = NULL) {

70

for (cur_room = 0; cur_room<max_room_num;cur_room-++)
for (day = 0; day<days_in_week; day++)
for (hour = 0; hour<hours_in_day; hour++){
fputn(curr_ptr -> bookings
[cur_room][day][hour],out);

}
curr_ptr = (curr_ptr -> next);
}
fclose(out);
return(0);

71

