F# Eye for the C# guy

Leon Bambrick, secretGeek.net

WTF#?

Fortran.net

FH

An Academic
Language

Reserved
For

Scienticians?

None of that.

Rather:

 General Purpose Language
* |deal for Real World Development

Friendly. Approachable.

A Multi-Paradigm Language!

“

|

P —

Crrs A ?ARADIG!‘\)

|

a what?

functional

procedural

object-
oriented

30 second review:

3

Big
Paradigms

procedural

* Do this, then that, then that
e Useful abstraction over machine code

* Assembly language, Fortran, C, Pascal

object oriented

Useful abstraction over procedural
Define types, methods, members
Inheritance, polymorphism, overloading

C++, VB.net, CH#, J#

procedural

Imperative

object
oriented

Functional
=The
Other Side

functional

Vocommen o MENARE
FRON MARS

No matter how far WVO???EH
back you go! (ﬁ 0 Venus

APIIGdF
Improving Communicalion d
et Wt Yo Yord i Yor Rl

JOHN GRAY PhD

g("é_ AT A SRE
%,'" R v’ b
77 S SO Stk ¥ MR
E-.éé’z’(s SR

Aﬂam] %’uﬁ v Alonzo Church
Cage Match of Death

functional

* Focus on results not process

 Decompose problem into ‘functions’

* Lisp, Scheme, Haskell, ML, Erlang

functional?

e Visual Basic has functions...

functional?

does that make it 'functional’ ?

functional?

FUNCTION ;ﬁ "method that returns a value”

functional?

Think:
"mathematical function”
"formula"

"equation "

Purely functional...

Side-
Effects!

Purely functional...

Avoid
Mutation!

Purely functional...

No
\Variables!

Only
Functions!

Purely functional...

Same
iInput ->

Same
output!

/

(D
Vg

>

> g

-
s
'.' > =
y s :
= . .
: !
’
. > |

L

;’ll w.\ " o

T

CLICG

il

e

o - ' x>
- TS
- ?

ur

_:‘ - 1‘41" ™™ &
-
- '.l:‘ﬁl

S %

P
f

-9

T

Why bother?

* Pure functions can be executed in parallel without interfering
with one another

Why bother?

e Pure functions can be “perfectly” cached

Why bother?

e Pure functions can be “partially” applied

Why bother?

* Functions can receive and return functions, for which all of
the above hold true

Why bother?

Pure functions can be executed in parallel without interfering
with one another

Pure functions can be “perfectly” cached
Pure functions can be “partially” applied

Pure functions can return functions, for which all of the
above still hold true

Allows for greater “modularity”

What’s the catch?

e “Hello world” is a side effect
e Custom runtimes a-plenty

What’s the catch?

* Smug Lisp weenies

Functional is the new OO
Some stuff is now cheap!

Functional is the new OO

Some stuff is now cheap!

—Ram
— Disk
—Cores

Functional is the new OO
Some stuff is now cheap!

—Ram
— Disk
—Cores

Some stuff remains expensive!

Functional is the new OO
Some stuff is now cheap!

—Ram
—Disk
—Cores
Some stuff remains expensive!

—Real Time
— Concurrency
— Locking

This tips the balance
toward higher abstractions

Genealogy of F¥ ...

 Theorem proving and ISWIM

Genealogy of F¥ ...

begat:
— ML “Meta Language”

Genealogy of F* ...

 Theorem proving and ISWIM begat:
— ML “Meta Language”, which begat:
« CAML

Genealogy of F* ...

 Theorem proving and ISWIM begat:
— ML “Meta Language”, which begat:
* CAML, which in turn begat
—OCaml

Oh!

Genealogy of F¥ ...

which in turn begat

»F

... a sort of OCaml.net (and more)

WTF#?

* First official functional language on .net
* Deep support thanks to Generics

WTF#?

e Recently assimilated by dev-div

Code!

//F#

let a 2

Code!

//F# //C#
let a = 2 # int a = 2

Code!

//F# More //C#
leta =2 4, //a function!

static 1nt a()

{

return 2;

¥

More Code!

// F# ﬁs/irﬁ::System;
#11 ght namespace ConsoleApplicationl
open System { class Program
let a = 2 { static int a()
console.wWriteLine a i return 2;
static void Main(string[] args)
i Console.WriteLine(a);

}
}

More Code!

/ / F# ﬁérsg System;

#11 ght namespace ConsoleApplicationl
open System { class Program

let a = 2 { static int a()
console.writeLine a : return 2;

static void Main(string[] args)

Console.WriteLine(a);

More Noise

Than Signal!

More Code!

//F# (g sysems

#11 ght namespace ConsoleApplicationl
open System { class Program

let a = 2 { static int a()
Cconsole.writeLine a U return 2

® |
static void Main(string[] args)

Console.WritelLine(a);

}

Looks Weakly typed?

Maybe Dynamic?

Dynamic?

Dynamic

e [T

Dynamic

Yet
Expressive

Dynamic

e [T

Yet Versatile

More Code!

//C#
// F# using System;
#11 ght namespace ConsoleApplicationl
{
open System class Program
{
let a = 2 static int a()
. ! {
Cconsole.WriteLine a } return 2;
static void Main(string[] args)
le.WriteLine(a);
Type } Conso

Inference }

Immutable by default

Il
N

let a
let a

Il
w

error: FSO037: Duplicate definition of value 'a’

simple function...
let square x = X * X
> val square : int -> 1nt
square 5

> val 1t : 1nt = 25

simple function...
let square x = X * X

> val squa

Parameter

square 5

> val 1t : 1nt = 25

simple function...
let square x = X * X
> val square : 1nt -> 1nt

square

B “Signature”
> val 1t

Discriminated union types
type Nullablelnt =
| Value of int
| Nothing of unit

example

type Weapon =
Knife

Gun

Bomb

type Weapon = //block any weapon!

Knife let block w =
Gun match w with
Bomb Knife

Gun ->disarm w
_ > difuse w

Pattern Matching

type Weapon =
Knife

Gun

Bomb

//block any weapon
let block w =

match w with
Knife
Gun ->disarm w
_ ->difuse w

block Gun
block Knife
block Bomb

Lazy is a virtue

let lazy_square x =
lazy (print_endline “thinking..."“
X * X)

let lazy_square_ten = lazy_square 10

//Tfirst time: “thinking..”
Lazy.force (lazy_square_ten)

//second time: no thinking, just result
Lazy.force (lazy_square_ten)

.5 Program Files

= o137 Useful libraries

#3) contrib
h doc
#-0) lib
{Eﬂ manual
=St Neat manual
=0
-|{) AsyncDelegates
-3 Automation
#-{C3) Concurrenttife
--{2) Differentiate
H-IC3) Directx
.[h FLing
{23 Math
{7 Parsing S a m p I e S
-2 Samples101
-2 SimpleForm
~{Z) SimpleInterop
{h Sockets
~{Z) TermWalker
-2 typefinder
{2 VideoPlayer
&3 Web
) WebCrawl
-2 winforms
-3 WPF

a tion 'FSharp_demo' (1 project) I_

Add I
» ||l 2] New Item...

Set as StartUp Project Existing Item

Nahiin br

Add New ltem - FSharp_demo

Categories: Templates: \@
Eaedisy | visual Studio installed templates

-

ra
| @] F# Interface File F# Lex File
| @] F# Script File | @] F# Source File
F# Yacc File | @] MLJF# Interface File
|| ML/F# Source File

My Templates

| Search Online Templates...

hA new F# interface file.

Name: | file1.fsi l

“Empty” source file...

filel.fs = Start Page

i
ff
ff
i
£
£
i
ff
i
ff
ff
i
£

i
ff
i
ff
g

F# Visual 5tudioc Sample File

Thi=s file contain=s some sample constructs to guide you through the
primitives of F#.

Contents:
— Simple computations
- Functions on integers.
- Tuples=s
- Strings
_ Lists 5 pages of help!
- Arrays
— Functions

Simple computations

Here i=z a =simple computation. HNote how code can be cumented
with '///' comment=s. You can use the extra —-html- ommand line
optigRns to gens g, HLW S dopesmen © a t 1 gpesi i maf o fro ¥

Make sure F# Interactive is running!

Add-in Manager

Available Add-ins Startup Command Line
ExecInline [l
¥'|F# Interactive for Visual Studio
[Tvisual Build Pro vS.NET Add-in L] L]
Description:

i Ok, I [Cancel

F# Interactive:

It’s the bomb!

F# Interactive:

F# Interactive

session (adds ;)

>

New Project

Project types:

- Business Intelligence Projects
Visual Basic
Visual C#
Visual J#
Visual C++
={Other Project Types |
- Setup and Deployment

- Database

- Extensibility
Visual Studio Solutions

1 led

Why learn F#?

Why learn F#?

e See where C# and VB.net are headed

Why learn F#?

* Learn one new language per year

Why learn F#?

1971 l 4004
8008
1972
1974 g 8080
19
: 78 .»-aose Moore's Law
982 — 286 Means More Performance
386™ Processor
1889 — Aasm DX Processor
1993 - ' = : " Péntium® Processor
1997 & = . i P Processor
1% : = = =

|1oo‘ooo.ooo

' 10,000,000

14,000,000

5
100,000 5ist?

i
I 10,000 gof

I1OOO

oore’s Law Ran Out!

Why learn F#?

1971 | 4004
1975 8008

1974

:878 ‘:SBB Moore's Law
Sg2 286 Means More Performance

Tsgs = 386™ Processor
1839 — 486™ DX Processor

8080

tium® Processor

Pentium® 4 Processor
|100.000.000

' 10,000,000
1,000,000

5isto"”

100,000

]
i 10.000 gof
l1000

Moore’s Law Ran Out!

(again, maybe)

Data Grows Quickly

But # of Dimensions Grows much faster!

And semi-structured data outgrowing
structured

Entropy Increasing

Complexity is through the roof!

Hence: Again with the donkey

“Software gets slower
faster than hardware
gets faster”

--Wirth’s Law

Lisp F# is worth learning for the profound
enlightenment experience you will have when
you finally get it; that experience will make
you a better programmer for the rest of your
days, even if you never actually use Lisp F#
itself a lot."

- Eric Raymond (Ib)

Some Applications of F#

Map/Reduce over internets
Financial Analysis

In process SQL Data Mining

XNA Games Development

Web tools, Compile F# to Javascript

Game Programming

Game Programming

3D Animation
Rendering

Shading

Simulation (e.g. physics)
Collision Detection

Al Opponents

38 Ways to Learn

FSl.exe

Samples Included

Go to definition

See the source!

Lutz’ Reflector

http://cs.hubfs.net

Codeplex Fsharp
Samples

Books

ML

http://cs.hubfs.net/

Acknowledgements

. John Hughes, Why Functional Programming Matters,
Cartman http://www.math.chalmers.se/~rimh/Papers/whyfp.html
Einstein L))
. Robert Pickering, Foundations of F#, http://www.apress.com/book/view/1590597575
Dilbert
X . Slava Akhmechet, Functional Programming For The Rest of Us,
Alan Turi ng http://www.defmacro.org/ramblings/fp.html

Alonzo Church . Steve Yegge, Execution In the Kingdom of Nouns, http://steve-yegge.blogspot.com/2006/03/execution-
Godzilla in-kingdom-of-nouns.html

Gears of war . P.J. Landin, The Next 700 Programming Languages
http://www.cs.utah.edu/~wilson/compilers/old/papers/p157-landin.pdf

. Tim Sweeney, The Next Mainstream Programming Language, http://www.st.cs.uni-
sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf

. Tomas Petricek, F# Web Tools, Ajax Made Simple, http://www.codeplex.com/fswebtools

Foundations of

. Herb Sutter, The Free Lunch Is Over - A Fundamental Turn Toward Concurrency in Software,
http://www.gotw.ca/publications/concurrency-ddj.htm

* Don Syme, http://blogs.msdn.com/dsyme

http://www.math.chalmers.se/~rjmh/Papers/whyfp.html
http://ww.apress.com/book/view/1590597575
http://www.defmacro.org/ramblings/fp.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://www.cs.utah.edu/~wilson/compilers/old/papers/p157-landin.pdf
http://www.cs.utah.edu/~wilson/compilers/old/papers/p157-landin.pdf
http://www.cs.utah.edu/~wilson/compilers/old/papers/p157-landin.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
http://www.codeplex.com/fswebtools
http://www.codeplex.com/fswebtools
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://blogs.msdn.com/dsyme

