
F# Eye for the C# guy

Leon Bambrick, secretGeek.net

WTF#?

F#

…it’s
Fortran.net

F#!@ YOU
GUYS!

F#
An Academic
Language

Reserved

For

Scienticians?

• General Purpose Language

• Ideal for Real World Development

None of that.

Rather:

Friendly. Approachable.

A Multi-Paradigm Language!

a what?

F#

object-
oriented

procedural

functional

30 second review:

3
Big

Paradigms

procedural

• Do this, then that, then that

• Useful abstraction over machine code

• Assembly language, Fortran, C, Pascal

object oriented

• Useful abstraction over procedural

• Define types, methods, members

• Inheritance, polymorphism, overloading

• C++, VB.net, C#, J#

procedural

object
oriented

imperative

Functional
= The

Other Side

functional

No common
ancestor with C

No matter how far
back you go!

functional

• Focus on results not process

• Decompose problem into ‘functions’

• Lisp, Scheme, Haskell, ML, Erlang

functional?

• Visual Basic has functions...

functional?

• Visual Basic has functions...

does that make it 'functional' ?

functional?

FUNCTION ≠ "method that returns a value"

functional?

FUNCTION ≠ "method that returns a value"

Think:

"mathematical function“

"formula"

"equation "

Purely functional…

Avoid

Side-

Effects!

Purely functional…

Avoid

Mutation!

Purely functional…

No
Variables!

Only
Functions!

Purely functional…

Same
input ->
Same
output!

No Shared State

Purely functional…

Why bother?

• Pure functions can be executed in parallel without interfering
with one another

Why bother?

• Pure functions can be executed in parallel without interfering
with one another

• Pure functions can be “perfectly” cached

Why bother?

• Pure functions can be executed in parallel without interfering
with one another

• Pure functions can be “perfectly” cached

• Pure functions can be “partially” applied

Why bother?

• Pure functions can be executed in parallel without interfering
with one another

• Pure functions can be “perfectly” cached

• Pure functions can be “partially” applied

• Functions can receive and return functions, for which all of
the above hold true

Why bother?

• Pure functions can be executed in parallel without interfering
with one another

• Pure functions can be “perfectly” cached

• Pure functions can be “partially” applied

• Pure functions can return functions, for which all of the
above still hold true

• Allows for greater “modularity”

What’s the catch?

• “Hello world” is a side effect

• Custom runtimes a-plenty

What’s the catch?

• “Hello world” is a side effect

• Custom runtimes a-plenty

• Smug Lisp weenies

Some stuff is now cheap!
–Ram

–Disk

–Cores

Some stuff remains expensive!
– Time

–Concurrency

– Locking

Functional is the new OO

Some stuff is now cheap!
–Ram

–Disk

–Cores

Some stuff remains expensive!
– Time

–Concurrency

– Locking

Functional is the new OO

Some stuff is now cheap!
–Ram

–Disk

–Cores

Some stuff remains expensive!
– Time

–Concurrency

– Locking

Functional is the new OO

Some stuff is now cheap!
–Ram

–Disk

–Cores

Some stuff remains expensive!
–Real Time

–Concurrency

– Locking

Functional is the new OO

This tips the balance
toward higher abstractions

Genealogy of F# …

• Theorem proving and ISWIM

Genealogy of F# …

• Theorem proving and ISWIM begat:

–ML “Meta Language”

Genealogy of F# …

• Theorem proving and ISWIM begat:

–ML “Meta Language”, which begat:

• CAML

Genealogy of F# …

• Theorem proving and ISWIM begat:

–ML “Meta Language”, which begat:

• CAML, which in turn begat

–OCaml

Oh!

Genealogy of F# …

• Theorem proving and ISWIM begat:

–ML “Meta Language”, which begat:

• CAML, which in turn begat

–OCaml, which in turn begat

»F#
... a sort of OCaml.net (and more)

WTF#?

• First official functional language on .net

• Deep support thanks to Generics

WTF#?

• First official functional language on .net

• Deep support thanks to Generics

• Recently assimilated by dev-div

Code!

//F#

let a = 2

Code!

//F#

let a = 2

//C#

int a = 2≠

Code!

//F#

let a = 2

//C#

//a function!

static int a()

{

return 2;

}

More
like

More Code!

//F#
#light

open System

let a = 2

Console.WriteLine a

//C#
using System;

namespace ConsoleApplication1
{

class Program
{

static int a()
{

return 2;
}

static void Main(string[] args)
{

Console.WriteLine(a);
}

}
}

More Code!

//F#
#light

open System

let a = 2

Console.WriteLine a

static a

2

Console.WriteLine aMore Noise
Than Signal!

More Code!

//F#
#light

open System

let a = 2

Console.WriteLine a

//C#
using System;

namespace ConsoleApplication1
{

class Program
{

static int a()
{

return 2;
}

static void Main(string[] args)
{

Console.WriteLine(a);
}

}
}

Looks Weakly typed?
Maybe Dynamic?

Strong? Dynamic?

Static? Weak?

F#?

Strong Dynamic

Static Weak

F#

Strong Dynamic

Static Weak

F# Yet
Expressive

Strong Dynamic

Static Weak

F#

Yet Versatile

More Code!

//F#
#light

open System

let a = 2

Console.WriteLine a

//C#
using System;

namespace ConsoleApplication1
{

class Program
{

static int a()
{

return 2;
}

static void Main(string[] args)
{

Console.WriteLine(a);
}

}
}

Type
Inference

let a = 2

let a = 3

error: FS0037: Duplicate definition of value 'a'

Immutable by default

let square x = x * x

> val square : int -> int

square 5

> val it : int = 25

simple function…

let square x = x * x

> val square : int -> int

square 5

> val it : int = 25

simple function…

Parameter

let square x = x * x

> val square : int -> int

square 5

> val it : int = 25

simple function…

“Signature”

Discriminated union types
type NullableInt =

| Value of int

| Nothing of unit

Discriminated unions example

type Weapon =

| Knife

| Gun

| Bomb

Pattern Matching

type Weapon =

| Knife

| Gun

| Bomb

//block any weapon!
let block w =

match w with
| Knife
| Gun -> disarm w
| _ -> difuse w

block Gun
block Knife
block Bomb

Pattern Matching

type Weapon =

| Knife

| Gun

| Bomb

//block any weapon
let block w =

match w with
| Knife
| Gun -> disarm w
| _ -> difuse w

block Gun
block Knife
block Bomb

Lazy is a virtue
let lazy_square x =

lazy (print_endline “thinking...“

x * x)

let lazy_square_ten = lazy_square 10

//first time: “thinking…”

Lazy.force (lazy_square_ten)

//second time: no thinking, just result

Lazy.force (lazy_square_ten)

Useful libraries

Neat manual

Awesome
Samples

“Empty” source file…

5 pages of help!

Make sure F# Interactive is running!

F# Interactive:

It’s the bomb!

F# Interactive:

Why learn F#?

• See where C# and VB.net are headed

Why learn F#?

• See where C# and VB.net are headed

• Learn one new language per year

Why learn F#?

Moore’s Law Ran Out!

Why learn F#?

Moore’s Law Ran Out!
(again, maybe)

Why learn F#?

• Data Grows Quickly

• But # of Dimensions Grows much faster!

• And semi-structured data outgrowing
structured

• Entropy Increasing

• Complexity is through the roof!

Hence: Again with the donkey

“Software gets slower
faster than hardware
gets faster”

--Wirth’s Law

Lisp F# is worth learning for the profound
enlightenment experience you will have when
you finally get it; that experience will make
you a better programmer for the rest of your
days, even if you never actually use Lisp F#
itself a lot."

- Eric Raymond (lb)

Some Applications of F#

• Map/Reduce over internets

• Financial Analysis

• In process SQL Data Mining

• XNA Games Development

• Web tools, Compile F# to Javascript

Game Programming

Game Programming

• 3D Animation

• Rendering

• Shading

• Simulation (e.g. physics)

• Collision Detection

• AI Opponents

8 Ways to Learn

• FSI.exe

• Samples Included

• Go to definition
– See the source!

• Lutz’ Reflector

• http://cs.hubfs.net

• Codeplex Fsharp
Samples

• Books

• ML

http://cs.hubfs.net/

Acknowledgements

• Cartman

• Einstein

• Dilbert

• Alan Turing

• Alonzo Church

• Godzilla

• Gears of war

• John Hughes, Why Functional Programming Matters,
http://www.math.chalmers.se/~rjmh/Papers/whyfp.html

• Robert Pickering, Foundations of F#, http://www.apress.com/book/view/1590597575

• Slava Akhmechet, Functional Programming For The Rest of Us,
http://www.defmacro.org/ramblings/fp.html

• Steve Yegge, Execution In the Kingdom of Nouns, http://steve-yegge.blogspot.com/2006/03/execution-
in-kingdom-of-nouns.html

• P. J. Landin, The Next 700 Programming Languages
http://www.cs.utah.edu/~wilson/compilers/old/papers/p157-landin.pdf

• Tim Sweeney, The Next Mainstream Programming Language, http://www.st.cs.uni-
sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf

• Tomas Petricek, F# Web Tools, Ajax Made Simple, http://www.codeplex.com/fswebtools

• Herb Sutter, The Free Lunch Is Over - A Fundamental Turn Toward Concurrency in Software,
http://www.gotw.ca/publications/concurrency-ddj.htm

• Don Syme, http://blogs.msdn.com/dsyme

http://www.math.chalmers.se/~rjmh/Papers/whyfp.html
http://ww.apress.com/book/view/1590597575
http://www.defmacro.org/ramblings/fp.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://www.cs.utah.edu/~wilson/compilers/old/papers/p157-landin.pdf
http://www.cs.utah.edu/~wilson/compilers/old/papers/p157-landin.pdf
http://www.cs.utah.edu/~wilson/compilers/old/papers/p157-landin.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
http://www.codeplex.com/fswebtools
http://www.codeplex.com/fswebtools
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://blogs.msdn.com/dsyme

